Chaos for endomorphisms of completely metrizable groups and linear operators on Fréchet spaces

IF 1.2 3区 数学 Q1 MATHEMATICS
Zhen Jiang, Jian Li
{"title":"Chaos for endomorphisms of completely metrizable groups and linear operators on Fréchet spaces","authors":"Zhen Jiang,&nbsp;Jian Li","doi":"10.1016/j.jmaa.2024.129033","DOIUrl":null,"url":null,"abstract":"<div><div>Using some techniques from topological dynamics, we give a uniform treatment of Li-Yorke chaos, mean Li-Yorke chaos and distributional chaos for continuous endomorphisms of completely metrizable groups, and characterize three kinds of chaos (resp. extreme chaos) in terms of the existence of the so-called semi-irregular points (resp. irregular points). We exhibit some examples of inner automorphisms of Polish groups to illustrate the results. We also apply our results to the chaos theory of continuous linear operators on Fréchet spaces, which improves some results in the literature.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129033"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009557","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Using some techniques from topological dynamics, we give a uniform treatment of Li-Yorke chaos, mean Li-Yorke chaos and distributional chaos for continuous endomorphisms of completely metrizable groups, and characterize three kinds of chaos (resp. extreme chaos) in terms of the existence of the so-called semi-irregular points (resp. irregular points). We exhibit some examples of inner automorphisms of Polish groups to illustrate the results. We also apply our results to the chaos theory of continuous linear operators on Fréchet spaces, which improves some results in the literature.
弗雷谢特空间上完全元胞群和线性算子的内定态混沌
利用拓扑动力学的一些技术,我们对完全可元群的连续内定形的Li-Yorke混沌、平均Li-Yorke混沌和分布混沌进行了统一处理,并从所谓半不规则点(或不规则点)的存在角度描述了三种混沌(或极端混沌)。我们列举了一些波兰群内自变的例子来说明这些结果。我们还将我们的结果应用于弗雷谢特空间上连续线性算子的混沌理论,从而改进了文献中的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信