The Riemann-Liouville fractional integral in Bochner-Lebesgue spaces III

IF 1.2 3区 数学 Q1 MATHEMATICS
Paulo M. Carvalho-Neto , Renato Fehlberg Júnior
{"title":"The Riemann-Liouville fractional integral in Bochner-Lebesgue spaces III","authors":"Paulo M. Carvalho-Neto ,&nbsp;Renato Fehlberg Júnior","doi":"10.1016/j.jmaa.2024.129023","DOIUrl":null,"url":null,"abstract":"<div><div>In this manuscript, we examine the continuity properties of the Riemann-Liouville fractional integral for order <span><math><mi>α</mi><mo>=</mo><mn>1</mn><mo>/</mo><mi>p</mi></math></span>, where <span><math><mi>p</mi><mo>&gt;</mo><mn>1</mn></math></span>, mapping from <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo></math></span> to the Banach space <span><math><mi>B</mi><mi>M</mi><mi>O</mi><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo><mo>∩</mo><msub><mrow><mi>K</mi></mrow><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo></math></span>. This improvement, refines a result by Hardy-Littlewood. To achieve this, we study properties between spaces <span><math><mi>B</mi><mi>M</mi><mi>O</mi><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo></math></span>. Additionally, we obtained the boundedness of the fractional integral of order <span><math><mi>α</mi><mo>≥</mo><mn>1</mn></math></span> from <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo></math></span> into the Riemann-Liouville fractional Sobolev space <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>R</mi><mi>L</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>p</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>;</mo><mi>X</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129023"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009454","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this manuscript, we examine the continuity properties of the Riemann-Liouville fractional integral for order α=1/p, where p>1, mapping from Lp(t0,t1;X) to the Banach space BMO(t0,t1;X)K(p1)/p(t0,t1;X). This improvement, refines a result by Hardy-Littlewood. To achieve this, we study properties between spaces BMO(t0,t1;X) and K(p1)/p(t0,t1;X). Additionally, we obtained the boundedness of the fractional integral of order α1 from L1(t0,t1;X) into the Riemann-Liouville fractional Sobolev space WRLs,p(t0,t1;X).
Bochner-Lebesgue 空间中的黎曼-刘维尔分数积分 III
在本手稿中,我们研究了阶α=1/p(其中 p>1 为 1)的黎曼-刘维尔分数积分的连续性性质,它是从 Lp(t0,t1;X) 映射到巴拿赫空间 BMO(t0,t1;X)∩K(p-1)/p(t0,t1;X) 的。这一改进完善了哈代-利特尔伍德的一个结果。为此,我们研究了空间 BMO(t0,t1;X) 和 K(p-1)/p(t0,t1;X) 之间的性质。此外,我们还得到了从 L1(t0,t1;X) 进入黎曼-黎奥维尔分数索波列夫空间 WRLs,p(t0,t1;X) 的阶数 α≥1 的分数积分的有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信