Max Emmanuel , Zhuoqi Lucas Li , Harry Heptinstall , Oriol Gavalda-Diaz , Rachid M'saoubi , Tomas Persson , Susanne Norgren , Thomas Benjamin Britton , Finn Giuliani , Katharina Marquardt
{"title":"Effect of chromium doping on the grain boundary character of WC-Co","authors":"Max Emmanuel , Zhuoqi Lucas Li , Harry Heptinstall , Oriol Gavalda-Diaz , Rachid M'saoubi , Tomas Persson , Susanne Norgren , Thomas Benjamin Britton , Finn Giuliani , Katharina Marquardt","doi":"10.1016/j.ijrmhm.2024.106954","DOIUrl":null,"url":null,"abstract":"<div><div>The life of cutting tool inserts is critically important for efficient machining, reducing manufacturing cost, embedded energy, and enabling more complex parts to be machined. For these applications, cemented carbide (WC-Co) materials are a prime candidate. The performance of these materials can be limited by early fracture, typically via an intergranular fracture path with respect to carbide grains. This motivates further studies to understand the character of the grain boundary network so that grain boundary engineering (GBE) of WC-Co tools can be used to improve tool life and performance. In this work, we have used Rohrer et al.'s five-parameter grain boundary character distribution (GBCD) analysis to examine the grain boundary network of WC-10wt%Co and WC-10wt%Co-1wt%Cr samples (Rohrer et al., 2004a [<span><span>1</span></span>]). It was found that the measured area fraction of the Σ2 boundaries was comparable to the values reported in the literature despite the relatively larger grain sizes (∼14 μm) and higher cobalt contents. The result suggests that chromium doping increases the area fraction of Σ2 boundaries from 12.8 % to 14.8 %. It is proposed that this is a consequence of altering the Σ2 boundary energy, as associated with adding chromium.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"126 ","pages":"Article 106954"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436824004025","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The life of cutting tool inserts is critically important for efficient machining, reducing manufacturing cost, embedded energy, and enabling more complex parts to be machined. For these applications, cemented carbide (WC-Co) materials are a prime candidate. The performance of these materials can be limited by early fracture, typically via an intergranular fracture path with respect to carbide grains. This motivates further studies to understand the character of the grain boundary network so that grain boundary engineering (GBE) of WC-Co tools can be used to improve tool life and performance. In this work, we have used Rohrer et al.'s five-parameter grain boundary character distribution (GBCD) analysis to examine the grain boundary network of WC-10wt%Co and WC-10wt%Co-1wt%Cr samples (Rohrer et al., 2004a [1]). It was found that the measured area fraction of the Σ2 boundaries was comparable to the values reported in the literature despite the relatively larger grain sizes (∼14 μm) and higher cobalt contents. The result suggests that chromium doping increases the area fraction of Σ2 boundaries from 12.8 % to 14.8 %. It is proposed that this is a consequence of altering the Σ2 boundary energy, as associated with adding chromium.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.