Substrate modification for high performance CrAl/CrAlBN multilayers coated TiCN-based cermet through plasma nitriding

IF 4.2 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Cheng Chen , Qingfang Yun , Changhua Chen , Xingwei Xu , Jianfeng Zhao , Qingxian Li , Wei Wang , Tijun Li , Zhixing Guo , Ji Xiong , Junbo Liu
{"title":"Substrate modification for high performance CrAl/CrAlBN multilayers coated TiCN-based cermet through plasma nitriding","authors":"Cheng Chen ,&nbsp;Qingfang Yun ,&nbsp;Changhua Chen ,&nbsp;Xingwei Xu ,&nbsp;Jianfeng Zhao ,&nbsp;Qingxian Li ,&nbsp;Wei Wang ,&nbsp;Tijun Li ,&nbsp;Zhixing Guo ,&nbsp;Ji Xiong ,&nbsp;Junbo Liu","doi":"10.1016/j.ijrmhm.2024.106930","DOIUrl":null,"url":null,"abstract":"<div><div>The plasma nitriding process was conducted on a TiCN-based cermet that had been coated with a multilayer CrAl/CrAlBN coating deposited via cathodic arc. The intensity of the plasma nitriding was modified by adjusting the anode current of the ionization source. To investigate the interface conditions, techniques such as electron probe X-ray microanalysis, electron backscatter diffraction, and transmission electron microscopy were employed. The results indicated that increasing the anode current led to the formation of a thicker nitrided layer and an increase in the texture coefficient of the (111) plane. Specifically, at an anode current of 200 A, the lattice mismatch degree at the TiCN/CrAlN interface decreased from 16.4 % to 3.7 %, resulting in the formation of a nearly coherent interface. The hardness, adhesion strength, and H/E ratio of the coating reached their peak values, and the coated cutting tool exhibited optimal cutting performance when machining the GH4149 superalloy.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"126 ","pages":"Article 106930"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436824003780","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The plasma nitriding process was conducted on a TiCN-based cermet that had been coated with a multilayer CrAl/CrAlBN coating deposited via cathodic arc. The intensity of the plasma nitriding was modified by adjusting the anode current of the ionization source. To investigate the interface conditions, techniques such as electron probe X-ray microanalysis, electron backscatter diffraction, and transmission electron microscopy were employed. The results indicated that increasing the anode current led to the formation of a thicker nitrided layer and an increase in the texture coefficient of the (111) plane. Specifically, at an anode current of 200 A, the lattice mismatch degree at the TiCN/CrAlN interface decreased from 16.4 % to 3.7 %, resulting in the formation of a nearly coherent interface. The hardness, adhesion strength, and H/E ratio of the coating reached their peak values, and the coated cutting tool exhibited optimal cutting performance when machining the GH4149 superalloy.
通过等离子氮化实现高性能 CrAl/CrAlBN 多层涂层 TiCN 基金属陶瓷的基底改性
等离子氮化过程是在通过阴极电弧沉积了多层 CrAl/CrAlBN 涂层的 TiCN 基金属陶瓷上进行的。通过调节电离源的阳极电流来改变等离子氮化的强度。为了研究界面条件,采用了电子探针 X 射线显微分析、电子反向散射衍射和透射电子显微镜等技术。结果表明,增加阳极电流会导致形成更厚的氮化层,并增加(111)面的纹理系数。具体来说,在阳极电流为 200 A 时,TiCN/CrAlN 界面的晶格失配度从 16.4 % 降至 3.7 %,从而形成了近乎一致的界面。涂层的硬度、附着强度和 H/E 比均达到峰值,涂层切削工具在加工 GH4149 超合金时表现出最佳切削性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
13.90%
发文量
236
审稿时长
35 days
期刊介绍: The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信