Hygrothermoelastic analysis of the nano-circular plate with memory effect

IF 4.4 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Nagesh Dhore , Lalsingh Khalsa , Vinod Varghese
{"title":"Hygrothermoelastic analysis of the nano-circular plate with memory effect","authors":"Nagesh Dhore ,&nbsp;Lalsingh Khalsa ,&nbsp;Vinod Varghese","doi":"10.1016/j.apm.2024.115797","DOIUrl":null,"url":null,"abstract":"<div><div>In hygrothermal environments, the coupling effects of temperature and moisture substantially impact deflection and stresses play a significant role. This study presents a coupled hygrothermoelastic model with non-Fourier and non-Fick effects established by introducing relaxation times or phase lags of heat and moisture flux accompanied by memory-dependent derivatives. The boundary value problem is formulated by considering a thin circular plate as an exemplary example, where the perimetric edge is clamped. The upper and lower edges of the plate is subjected to zero temperature, whereas the curved surface is exposed to hygrothermal shock. The closed-form solution of temperature and moisture distribution is obtained via the integral transform approach. The Fourier series expansion approach is used to calculate the numerical Laplace inversion. The effects of both heat and moisture flux relaxation times on the thermal deflection/stresses of the plate are analyzed and illustrated graphically.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":"138 ","pages":"Article 115797"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Modelling","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0307904X2400550X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In hygrothermal environments, the coupling effects of temperature and moisture substantially impact deflection and stresses play a significant role. This study presents a coupled hygrothermoelastic model with non-Fourier and non-Fick effects established by introducing relaxation times or phase lags of heat and moisture flux accompanied by memory-dependent derivatives. The boundary value problem is formulated by considering a thin circular plate as an exemplary example, where the perimetric edge is clamped. The upper and lower edges of the plate is subjected to zero temperature, whereas the curved surface is exposed to hygrothermal shock. The closed-form solution of temperature and moisture distribution is obtained via the integral transform approach. The Fourier series expansion approach is used to calculate the numerical Laplace inversion. The effects of both heat and moisture flux relaxation times on the thermal deflection/stresses of the plate are analyzed and illustrated graphically.
具有记忆效应的纳米圆板的水热弹性分析
在湿热环境中,温度和湿度的耦合效应对变形和应力产生重大影响。本研究通过引入热量和湿度通量的弛豫时间或相位滞后以及依赖记忆的导数,提出了一种具有非傅里叶和非菲克效应的耦合湿热弹性模型。边界值问题是通过考虑一个薄圆盘作为示例来制定的,圆盘的周边边缘是夹紧的。板的上下边缘温度为零,而曲面则受到湿热冲击。温度和湿度分布的闭式解法是通过积分变换法获得的。傅里叶级数展开方法用于计算拉普拉斯数值反演。分析了热通量和湿通量弛豫时间对板的热挠度/应力的影响,并用图形进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematical Modelling
Applied Mathematical Modelling 数学-工程:综合
CiteScore
9.80
自引率
8.00%
发文量
508
审稿时长
43 days
期刊介绍: Applied Mathematical Modelling focuses on research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. A significant emerging area of research activity involves multiphysics processes, and contributions in this area are particularly encouraged. This influential publication covers a wide spectrum of subjects including heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimization; finite volume, finite element, and boundary element procedures; modelling of inventory, industrial, manufacturing and logistics systems for viable decision making; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering. Applied Mathematical Modelling is primarily interested in papers developing increased insights into real-world problems through novel mathematical modelling, novel applications or a combination of these. Papers employing existing numerical techniques must demonstrate sufficient novelty in the solution of practical problems. Papers on fuzzy logic in decision-making or purely financial mathematics are normally not considered. Research on fractional differential equations, bifurcation, and numerical methods needs to include practical examples. Population dynamics must solve realistic scenarios. Papers in the area of logistics and business modelling should demonstrate meaningful managerial insight. Submissions with no real-world application will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信