Xin Li , Zhenggui Zhang , Zhanlei Pan , Guilan Sun , Pengcheng Li , Jing Chen , Lizhi Wang , Kunfeng Wang , Ao Li , Junhong Li , Yaopeng Zhang , Menghua Zhai , Wenqi Zhao , Jian Wang , Zhanbiao Wang
{"title":"Demonstrating almost half of cotton fiber quality variation is attributed to climate change using a hybrid machine learning-enabled approach","authors":"Xin Li , Zhenggui Zhang , Zhanlei Pan , Guilan Sun , Pengcheng Li , Jing Chen , Lizhi Wang , Kunfeng Wang , Ao Li , Junhong Li , Yaopeng Zhang , Menghua Zhai , Wenqi Zhao , Jian Wang , Zhanbiao Wang","doi":"10.1016/j.eja.2024.127426","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the effects of climate change on cotton fiber quality will reduce the risks to production caused by global warming. Machine learning algorithms are effective for forecasting climate impacts on crops. However, the impact of climate change on cotton fiber quality is unclear. Hence, a hybrid machine learning-enabled approach, the Bayesian model average (BMA) method with multiple machine learning algorithms (linear regressor, SVR, RFR, GBDT, LightGBM, and XGBoost) and bootstrap resampling, was developed to explore the impact and screen the important climatic factors affecting various traits of fiber quality. On the basis of fiber quality data from 1033 test stations across Xinjiang, China, from 2016 to 2022, the explained variance for climate change in the hybrid machine learning model was as follows: 44.72 %–50.55 % for white cotton grade, 44.06 %–53.95 % for length, 51.72 %–56.81 % for micronaire, 32.70 %–49.50 % for length uniformity, and 45.66 %–53.09 % for strength in the 1000 bootstrapping samples. In addition, recursive feature elimination with cross-validation (RFECV) was used to select the optimal feature set and calculate the contribution of each feature. The variability in micronaire in the hybrid model was affected primarily by climate factors, such as the daily minimum temperature, rainfall, and wind speed, whereas the other quality traits were affected mainly by radiation-related climatic indicators. The climate during the harvest stage in October had a significant effect on cotton quality, explaining 33.0 % of the variance in white cotton grade, 32.1 % in length, and 48.3 % in fiber strength. Conversely, the climate during the boll opening and early harvest stages in September had a greater influence on micronaire and length uniformity, accounting for 21.4 % and 37.2 % of the variance, respectively<em>.</em> This study highlights that climate change explains nearly 50 % of the variation in fiber quality, with the influence being notably more considerable during the later stages of the cotton growth period. These findings clarify the uncertainty in the impact of climate change on cotton fiber quality considering the uncertainty of the single machine model and model errors. Equally important, this information can be valuable for farmers and growers seeking to improve fiber quality under climate change.</div></div>","PeriodicalId":51045,"journal":{"name":"European Journal of Agronomy","volume":"162 ","pages":"Article 127426"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Agronomy","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1161030124003472","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the effects of climate change on cotton fiber quality will reduce the risks to production caused by global warming. Machine learning algorithms are effective for forecasting climate impacts on crops. However, the impact of climate change on cotton fiber quality is unclear. Hence, a hybrid machine learning-enabled approach, the Bayesian model average (BMA) method with multiple machine learning algorithms (linear regressor, SVR, RFR, GBDT, LightGBM, and XGBoost) and bootstrap resampling, was developed to explore the impact and screen the important climatic factors affecting various traits of fiber quality. On the basis of fiber quality data from 1033 test stations across Xinjiang, China, from 2016 to 2022, the explained variance for climate change in the hybrid machine learning model was as follows: 44.72 %–50.55 % for white cotton grade, 44.06 %–53.95 % for length, 51.72 %–56.81 % for micronaire, 32.70 %–49.50 % for length uniformity, and 45.66 %–53.09 % for strength in the 1000 bootstrapping samples. In addition, recursive feature elimination with cross-validation (RFECV) was used to select the optimal feature set and calculate the contribution of each feature. The variability in micronaire in the hybrid model was affected primarily by climate factors, such as the daily minimum temperature, rainfall, and wind speed, whereas the other quality traits were affected mainly by radiation-related climatic indicators. The climate during the harvest stage in October had a significant effect on cotton quality, explaining 33.0 % of the variance in white cotton grade, 32.1 % in length, and 48.3 % in fiber strength. Conversely, the climate during the boll opening and early harvest stages in September had a greater influence on micronaire and length uniformity, accounting for 21.4 % and 37.2 % of the variance, respectively. This study highlights that climate change explains nearly 50 % of the variation in fiber quality, with the influence being notably more considerable during the later stages of the cotton growth period. These findings clarify the uncertainty in the impact of climate change on cotton fiber quality considering the uncertainty of the single machine model and model errors. Equally important, this information can be valuable for farmers and growers seeking to improve fiber quality under climate change.
期刊介绍:
The European Journal of Agronomy, the official journal of the European Society for Agronomy, publishes original research papers reporting experimental and theoretical contributions to field-based agronomy and crop science. The journal will consider research at the field level for agricultural, horticultural and tree crops, that uses comprehensive and explanatory approaches. The EJA covers the following topics:
crop physiology
crop production and management including irrigation, fertilization and soil management
agroclimatology and modelling
plant-soil relationships
crop quality and post-harvest physiology
farming and cropping systems
agroecosystems and the environment
crop-weed interactions and management
organic farming
horticultural crops
papers from the European Society for Agronomy bi-annual meetings
In determining the suitability of submitted articles for publication, particular scrutiny is placed on the degree of novelty and significance of the research and the extent to which it adds to existing knowledge in agronomy.