Zeqi Nie , Wenkai Yan , Xin Han , Huihuang Yu , Yapeng Zhang , Mengqi Tian , Xinyu Zhang , Yige Xiong , Peng Cao , Guanhua Zhang
{"title":"Damage-free non-mechanical transfer strategy for highly transparent, stretchable embedded metallic micromesh electrodes","authors":"Zeqi Nie , Wenkai Yan , Xin Han , Huihuang Yu , Yapeng Zhang , Mengqi Tian , Xinyu Zhang , Yige Xiong , Peng Cao , Guanhua Zhang","doi":"10.1016/j.compositesb.2024.111934","DOIUrl":null,"url":null,"abstract":"<div><div>Stretchable, flexible, transparent electrodes garner significant research interest as indispensable components of flexible optoelectronic devices. However, frequent mechanical transfers during processing pose a considerable challenge in preparing electrodes of scalable size with superior performance and intact structure. Herein, we present a stretchable embedded metallic micromesh (SEMM) electrode with high optoelectronic and robust mechanical properties. The SEMM electrode is fabricated via a damage-free non-mechanical transfer strategy with the assistance of a bifunctional metal transition layer that serves as both a seed layer during electrodeposition and a sacrificial layer during stripping of the electrode. Consequently, the SEMM electrode features a scalable size and an intact structure. By optimizing the electrodeposition parameters, the SEMM achieves high optical transmittance (∼83 %) and low sheet resistance (0.22 Ω sq<sup>−1</sup>), with a figure of merit reaching 8600–53 times greater than that of commercial polyethylene terephthalate-indium tin oxide (PET-ITO). Furthermore, the SEMM exhibits excellent mechanical stability, enduring up to 60 % of tensile strain and maintaining almost constant normalized resistance after 20,000 bending cycles. Based on the SEMM, a transparent film heater yields rapid response time, low operating voltage, and fast defogging capability. This non-mechanical transfer strategy offers a compelling approach for enhancing the structural integrity and scalability of stretchable embedded transparent electrodes.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"289 ","pages":"Article 111934"},"PeriodicalIF":12.7000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824007467","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Stretchable, flexible, transparent electrodes garner significant research interest as indispensable components of flexible optoelectronic devices. However, frequent mechanical transfers during processing pose a considerable challenge in preparing electrodes of scalable size with superior performance and intact structure. Herein, we present a stretchable embedded metallic micromesh (SEMM) electrode with high optoelectronic and robust mechanical properties. The SEMM electrode is fabricated via a damage-free non-mechanical transfer strategy with the assistance of a bifunctional metal transition layer that serves as both a seed layer during electrodeposition and a sacrificial layer during stripping of the electrode. Consequently, the SEMM electrode features a scalable size and an intact structure. By optimizing the electrodeposition parameters, the SEMM achieves high optical transmittance (∼83 %) and low sheet resistance (0.22 Ω sq−1), with a figure of merit reaching 8600–53 times greater than that of commercial polyethylene terephthalate-indium tin oxide (PET-ITO). Furthermore, the SEMM exhibits excellent mechanical stability, enduring up to 60 % of tensile strain and maintaining almost constant normalized resistance after 20,000 bending cycles. Based on the SEMM, a transparent film heater yields rapid response time, low operating voltage, and fast defogging capability. This non-mechanical transfer strategy offers a compelling approach for enhancing the structural integrity and scalability of stretchable embedded transparent electrodes.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.