Bartłomiej Toroń , Tushar Kanti Das , Mateusz Kozioł , Piotr Szperlich , Mirosława Kępińska
{"title":"Impact of hydrochloric acid doping on polyaniline conductivity and piezoelectric performance in polyaniline/bismuth oxyiodide nanocomposites","authors":"Bartłomiej Toroń , Tushar Kanti Das , Mateusz Kozioł , Piotr Szperlich , Mirosława Kępińska","doi":"10.1016/j.compositesb.2024.111960","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the impact of hydrochloric acid (HCl) doping, ranging from 0.2 M to 1.25 M, on the conductivity of polyaniline (PANI) and the piezoelectric performance of polyaniline/bismuth oxyiodide (PANI/BiOI) nanocomposites (NCs). Two distinct methods for fabricating NCs based on PANI and bismuth oxyiodide (BiOI) are proposed. Two distinct methods for fabricating PANI/BiOI NCs are proposed, and their optical and electrical properties are systematically examined. The direct allowed energy bandgap of the NCs is found to be approximately 1.9 eV. The piezoelectric performance, attributed to the 2D Janus structure of BiOI, is explored in detail, with the bulk piezoelectric coefficient measured at 1.43 (65) pm/V. Sensitivity to pressure interaction reached 21.1 (92) mV/bar, and the generated power was 5.09 nW for air pressure excitation in a composite consisting of 37.5 wt% BiOI and 62.5 wt% PANI doped with 0.2 M HCl, fabricated in-situ. The results demonstrate precise control over key parameters, including the fabrication method, sample thickness, HCl doping concentration, and BiOI content, highlighting the significant potential for enhancing nanogenerator functionality. These findings provide valuable insights into improving the performance of piezoelectric materials for energy harvesting technologies.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"289 ","pages":"Article 111960"},"PeriodicalIF":12.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824007728","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the impact of hydrochloric acid (HCl) doping, ranging from 0.2 M to 1.25 M, on the conductivity of polyaniline (PANI) and the piezoelectric performance of polyaniline/bismuth oxyiodide (PANI/BiOI) nanocomposites (NCs). Two distinct methods for fabricating NCs based on PANI and bismuth oxyiodide (BiOI) are proposed. Two distinct methods for fabricating PANI/BiOI NCs are proposed, and their optical and electrical properties are systematically examined. The direct allowed energy bandgap of the NCs is found to be approximately 1.9 eV. The piezoelectric performance, attributed to the 2D Janus structure of BiOI, is explored in detail, with the bulk piezoelectric coefficient measured at 1.43 (65) pm/V. Sensitivity to pressure interaction reached 21.1 (92) mV/bar, and the generated power was 5.09 nW for air pressure excitation in a composite consisting of 37.5 wt% BiOI and 62.5 wt% PANI doped with 0.2 M HCl, fabricated in-situ. The results demonstrate precise control over key parameters, including the fabrication method, sample thickness, HCl doping concentration, and BiOI content, highlighting the significant potential for enhancing nanogenerator functionality. These findings provide valuable insights into improving the performance of piezoelectric materials for energy harvesting technologies.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.