Pulsed plasma vapour deposition of carbon materials: Advantages and challenges

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Carles Corbella , Asim Aijaz , Tomas Kubart , Li Lin , Sabine Portal , Michael Keidar
{"title":"Pulsed plasma vapour deposition of carbon materials: Advantages and challenges","authors":"Carles Corbella ,&nbsp;Asim Aijaz ,&nbsp;Tomas Kubart ,&nbsp;Li Lin ,&nbsp;Sabine Portal ,&nbsp;Michael Keidar","doi":"10.1016/j.carbon.2024.119772","DOIUrl":null,"url":null,"abstract":"<div><div>Here, we review the benefits of low-temperature pulsed plasma technology on the synthesis of amorphous and diamond-like carbon (DLC) films, nanocrystalline diamond (NCD) films, and carbon nanomaterials, such as graphene and carbon nanotubes. Physical and chemical vapour depositions of strong carbon materials are dominated in industry by magnetron sputtering and vacuum arc. At research stage, carbon deposition can be accomplished by many techniques involving pulsed discharges in vacuum or atmospheric pressure. Either by pulsed-DC glow discharge, high-power impulse magnetron sputtering (HiPIMS), filtered cathodic vacuum arc (FCVA), or anodic arc discharge, the structural and mechanical properties of carbon-based samples can be tailored by adequately adjusting “plasma knobs”, namely peak power, pulse duration, and duty cycle. Milestones such as tuning surface properties via ion bombardment, enhancing plasma ionisation through energetic pulses, and stabilization of plasma processes for industrial implementation, are discussed. Also, pulsed plasma technology arises as an excellent laboratory to train machine learning algorithms thanks to the large variety of material properties. In conclusion, nonequilibrium plasmas operated with pulsed power provide exciting opportunities for (1) fabrication of new carbon architectures with desired functional properties for many applications, and (2) advancing our knowledge on carbon plasma chemistry via artificial intelligence resources.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324009916","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Here, we review the benefits of low-temperature pulsed plasma technology on the synthesis of amorphous and diamond-like carbon (DLC) films, nanocrystalline diamond (NCD) films, and carbon nanomaterials, such as graphene and carbon nanotubes. Physical and chemical vapour depositions of strong carbon materials are dominated in industry by magnetron sputtering and vacuum arc. At research stage, carbon deposition can be accomplished by many techniques involving pulsed discharges in vacuum or atmospheric pressure. Either by pulsed-DC glow discharge, high-power impulse magnetron sputtering (HiPIMS), filtered cathodic vacuum arc (FCVA), or anodic arc discharge, the structural and mechanical properties of carbon-based samples can be tailored by adequately adjusting “plasma knobs”, namely peak power, pulse duration, and duty cycle. Milestones such as tuning surface properties via ion bombardment, enhancing plasma ionisation through energetic pulses, and stabilization of plasma processes for industrial implementation, are discussed. Also, pulsed plasma technology arises as an excellent laboratory to train machine learning algorithms thanks to the large variety of material properties. In conclusion, nonequilibrium plasmas operated with pulsed power provide exciting opportunities for (1) fabrication of new carbon architectures with desired functional properties for many applications, and (2) advancing our knowledge on carbon plasma chemistry via artificial intelligence resources.
碳材料的脉冲等离子气相沉积:优势与挑战
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信