{"title":"Multi-Scale convolutional neural network for finger vein recognition","authors":"Junbo Liu, Hui Ma, Zishuo Guo","doi":"10.1016/j.infrared.2024.105624","DOIUrl":null,"url":null,"abstract":"<div><div>With the continuous advancement of science and technology, an increasing number of deep learning methods are being applied in the field of finger vein recognition to describe the structural characteristics of finger veins. However, some deep learning methods fail to adequately extract longer texture features. during the feature extraction process, resulting in a decrease in the uniqueness of extracted finger vein features. Additionally, these methods tend to extract global information while neglecting the importance of local texture information. To address the aforementioned issues, this paper introduces a multiscale convolution network (MCNet) model based on finger vein structure. On one hand, a multiscale feature extraction (MFE) model based on the rectangular and square convolution kernels are employed to extract structural information from finger veins and to simultaneously enhance the features of longer texture features. On the other hand, the paper introduces a cross-information fusion attention (CFA) block that combines spatial and channel information, in order to enhance local details information and the network’s ability to extract vein patterns. The experimental results on the public datasets FV-USM, SDUMLA-HMT, and HKPU validate the effectiveness of MCNet with the recognition rates of 99.86%, 99.11%, and 99.15% respectively.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"143 ","pages":"Article 105624"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350449524005085","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
With the continuous advancement of science and technology, an increasing number of deep learning methods are being applied in the field of finger vein recognition to describe the structural characteristics of finger veins. However, some deep learning methods fail to adequately extract longer texture features. during the feature extraction process, resulting in a decrease in the uniqueness of extracted finger vein features. Additionally, these methods tend to extract global information while neglecting the importance of local texture information. To address the aforementioned issues, this paper introduces a multiscale convolution network (MCNet) model based on finger vein structure. On one hand, a multiscale feature extraction (MFE) model based on the rectangular and square convolution kernels are employed to extract structural information from finger veins and to simultaneously enhance the features of longer texture features. On the other hand, the paper introduces a cross-information fusion attention (CFA) block that combines spatial and channel information, in order to enhance local details information and the network’s ability to extract vein patterns. The experimental results on the public datasets FV-USM, SDUMLA-HMT, and HKPU validate the effectiveness of MCNet with the recognition rates of 99.86%, 99.11%, and 99.15% respectively.
期刊介绍:
The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region.
Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine.
Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.