Berkay Kebapcıoğlu , Kuter Erdil , Ahmet Can Erten , Onur Ferhanoğlu , Mustafa Berke Yelten
{"title":"Magnetic actuator driver system for laser scanning capsule endoscopy","authors":"Berkay Kebapcıoğlu , Kuter Erdil , Ahmet Can Erten , Onur Ferhanoğlu , Mustafa Berke Yelten","doi":"10.1016/j.aeue.2024.155571","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on designing and implementing a power and area-efficient magnetic actuator driver interface integrated circuit for laser scanning capsule endoscopy. The proposed system contains a 3D-printed focus-adjusting actuator embarking a lens, multiple magnets, an external coil, battery, laser, and actuator driver integrated circuit with off-chip components. The actuator features multiple pantograph springs connected to the lens, as well as multiple magnets, enabling precise focusing capability through electromagnetic actuation. A magnetic actuator driver integrated circuit implemented in a commercial 180 nm CMOS process drives the coil at 32 Hz, which is the mechanical resonance frequency of the actuator. A novel control methodology for the driver has been devised, aimed at enhancing driving efficiency and mitigating total harmonic distortion. Simulations and measurements substantiate that the actuator can induce a 3.22 mm focal point displacement while the driver circuit delivers 9.62 mA (RMS) current to the 7.7 mH coil. Under these conditions, the system exhibits an aggregate power consumption of 11.48 mW, thereby achieving a power efficiency of 85.5%.</div></div>","PeriodicalId":50844,"journal":{"name":"Aeu-International Journal of Electronics and Communications","volume":"188 ","pages":"Article 155571"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeu-International Journal of Electronics and Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434841124004576","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on designing and implementing a power and area-efficient magnetic actuator driver interface integrated circuit for laser scanning capsule endoscopy. The proposed system contains a 3D-printed focus-adjusting actuator embarking a lens, multiple magnets, an external coil, battery, laser, and actuator driver integrated circuit with off-chip components. The actuator features multiple pantograph springs connected to the lens, as well as multiple magnets, enabling precise focusing capability through electromagnetic actuation. A magnetic actuator driver integrated circuit implemented in a commercial 180 nm CMOS process drives the coil at 32 Hz, which is the mechanical resonance frequency of the actuator. A novel control methodology for the driver has been devised, aimed at enhancing driving efficiency and mitigating total harmonic distortion. Simulations and measurements substantiate that the actuator can induce a 3.22 mm focal point displacement while the driver circuit delivers 9.62 mA (RMS) current to the 7.7 mH coil. Under these conditions, the system exhibits an aggregate power consumption of 11.48 mW, thereby achieving a power efficiency of 85.5%.
期刊介绍:
AEÜ is an international scientific journal which publishes both original works and invited tutorials. The journal''s scope covers all aspects of theory and design of circuits, systems and devices for electronics, signal processing, and communication, including:
signal and system theory, digital signal processing
network theory and circuit design
information theory, communication theory and techniques, modulation, source and channel coding
switching theory and techniques, communication protocols
optical communications
microwave theory and techniques, radar, sonar
antennas, wave propagation
AEÜ publishes full papers and letters with very short turn around time but a high standard review process. Review cycles are typically finished within twelve weeks by application of modern electronic communication facilities.