Synergistic effects of hydroxyl and tertiary amine in the catalytic carbonatization of epoxides with CO2 at atmospheric pressure

Fawaz Al Hussein , Andreas Hartwig , Henning Großekappenberg
{"title":"Synergistic effects of hydroxyl and tertiary amine in the catalytic carbonatization of epoxides with CO2 at atmospheric pressure","authors":"Fawaz Al Hussein ,&nbsp;Andreas Hartwig ,&nbsp;Henning Großekappenberg","doi":"10.1016/j.tgchem.2024.100057","DOIUrl":null,"url":null,"abstract":"<div><div>Fixation of carbon dioxide is a key issue for the sustainable synthesis of chemical compounds. A catalyst system for the preparation of cyclic carbonates by the fixation of carbon dioxide (CO<sub>2</sub>) onto epoxides is presented. This system is designed for easy application due to the availability of the compounds on an industrial scale as well as moderate reaction conditions. Notably, it avoids the use of metal-halogen catalysts and instead employs a tertiary amine as the catalytic center, in conjunction with an alcohol acting as a hydrogen bond donor (HBD). The kinetics of the cycloaddition reaction between epoxides and CO<sub>2</sub> were thoroughly investigated using IR spectroscopy. Remarkably, optimization of the amino-to-alcohol group ratio and the amine structure was carried out to enhance the overall performance of the catalyst system showing a synergistic effect between the tertiary amine and the hydroxyl. Most notably, this entire process is conducted without the use of solvents and operates at ambient pressure, underscoring its significant ecological advantages.</div></div>","PeriodicalId":101215,"journal":{"name":"Tetrahedron Green Chem","volume":"4 ","pages":"Article 100057"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tetrahedron Green Chem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773223124000220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fixation of carbon dioxide is a key issue for the sustainable synthesis of chemical compounds. A catalyst system for the preparation of cyclic carbonates by the fixation of carbon dioxide (CO2) onto epoxides is presented. This system is designed for easy application due to the availability of the compounds on an industrial scale as well as moderate reaction conditions. Notably, it avoids the use of metal-halogen catalysts and instead employs a tertiary amine as the catalytic center, in conjunction with an alcohol acting as a hydrogen bond donor (HBD). The kinetics of the cycloaddition reaction between epoxides and CO2 were thoroughly investigated using IR spectroscopy. Remarkably, optimization of the amino-to-alcohol group ratio and the amine structure was carried out to enhance the overall performance of the catalyst system showing a synergistic effect between the tertiary amine and the hydroxyl. Most notably, this entire process is conducted without the use of solvents and operates at ambient pressure, underscoring its significant ecological advantages.

Abstract Image

羟基和叔胺在常压下催化环氧化物与二氧化碳的碳化反应中的协同效应
固定二氧化碳是可持续合成化合物的一个关键问题。本文介绍了一种通过将二氧化碳 (CO2) 固定在环氧化物上制备环状碳酸盐的催化剂系统。该系统的设计易于应用,因为可以在工业规模上获得化合物,而且反应条件适中。值得注意的是,它避免了使用金属卤素催化剂,而是采用叔胺作为催化中心,同时使用醇作为氢键供体(HBD)。利用红外光谱对环氧化物与 CO2 的环化反应动力学进行了深入研究。值得注意的是,通过优化氨基与酒精基团的比例以及胺的结构,提高了催化剂系统的整体性能,显示了叔胺与羟基之间的协同效应。最值得注意的是,整个过程无需使用溶剂,并在环境压力下运行,这突出了其显著的生态优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信