Characteristic conic connections and torsion-free principal connections

IF 2.1 1区 数学 Q1 MATHEMATICS
Jun-Muk Hwang , Qifeng Li
{"title":"Characteristic conic connections and torsion-free principal connections","authors":"Jun-Muk Hwang ,&nbsp;Qifeng Li","doi":"10.1016/j.matpur.2024.103626","DOIUrl":null,"url":null,"abstract":"<div><div>We study the relation between torsion tensors of principal connections on G-structures and characteristic conic connections on associated cone structures. We formulate sufficient conditions under which the existence of a characteristic conic connection implies the existence of a torsion-free principal connection. We verify these conditions for adjoint varieties of simple Lie algebras, excluding those of type <span><math><msub><mrow><mtext>A</mtext></mrow><mrow><mi>ℓ</mi><mo>≠</mo><mn>2</mn></mrow></msub></math></span> or <span><math><msub><mrow><mtext>C</mtext></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span>. As an application, we give a complete classification of the germs of minimal rational curves whose VMRT at a general point is such an adjoint variety: nontrivial ones come from lines on hyperplane sections of certain Grassmannians or minimal rational curves on wonderful group compactifications.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"191 ","pages":"Article 103626"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424001247","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the relation between torsion tensors of principal connections on G-structures and characteristic conic connections on associated cone structures. We formulate sufficient conditions under which the existence of a characteristic conic connection implies the existence of a torsion-free principal connection. We verify these conditions for adjoint varieties of simple Lie algebras, excluding those of type A2 or C. As an application, we give a complete classification of the germs of minimal rational curves whose VMRT at a general point is such an adjoint variety: nontrivial ones come from lines on hyperplane sections of certain Grassmannians or minimal rational curves on wonderful group compactifications.
特征圆锥连接和无扭主连接
我们研究了 G 结构上主连接的扭转张量与相关圆锥结构上特征圆锥连接之间的关系。我们提出了充分条件,在这些条件下,特征圆锥连接的存在意味着无扭主连接的存在。我们对简单李代数的邻接变体验证了这些条件,但不包括 Aℓ≠2 或 Cℓ 类型的邻接变体。作为应用,我们给出了最小有理曲线的完整分类,这些曲线在一般点上的 VMRT 就是这样的邻接簇:非小数的有理曲线来自某些格拉斯曼超平面截面上的线或奇妙群压实上的最小有理曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信