Weiguang Hu , Qing Yan , Sainan Ma , Ruiqin Gao , Qin Wang , Weiyong Yuan
{"title":"Surface-selenization formed NiFe MOF@NiSex heterogeneous arrays for enhanced oxygen evolution and methanol electrooxidation","authors":"Weiguang Hu , Qing Yan , Sainan Ma , Ruiqin Gao , Qin Wang , Weiyong Yuan","doi":"10.1016/j.jelechem.2024.118789","DOIUrl":null,"url":null,"abstract":"<div><div>Designing reasonable electrocatalysts for oxygen evolution reaction (OER) is a vital issue for water splitting to hydrogen. We report a surface-selenization of NiFe MOF-74 formed NiFe MOF@NiSe<sub>x</sub> arrays through the simple solvothermal method. The NiFe MOF@NiSe<sub>x</sub> heterostructures greatly enhance the charge transfer and cooperativity of active sites and result in strong adsorption capacity for OH<sup>–</sup> to strongly boost the OER and MOR process. The optimized electrode shows the highly efficient catalytic activity for OER with a low onset potential of 1.31 V vs. RHE and small Tafel slopes of 38.3 mV dec<sup>−1</sup> in alkaline media. And it shows the extremely low overpotential of 229 and 329 mV at 100 and 500 mA cm<sup>−2</sup>. Moreover, its current density can reach more than 500 mA cm<sup>−2</sup> at the potentials of 1.645 V vs. RHE at 0.8 M methanol/1 M KOH electrolyte, and it shows very good long-term stability at large current density. This heterogeneous arrays electrocatalysts may play a positive role in energy conversion and storage process.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"975 ","pages":"Article 118789"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665724007677","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Designing reasonable electrocatalysts for oxygen evolution reaction (OER) is a vital issue for water splitting to hydrogen. We report a surface-selenization of NiFe MOF-74 formed NiFe MOF@NiSex arrays through the simple solvothermal method. The NiFe MOF@NiSex heterostructures greatly enhance the charge transfer and cooperativity of active sites and result in strong adsorption capacity for OH– to strongly boost the OER and MOR process. The optimized electrode shows the highly efficient catalytic activity for OER with a low onset potential of 1.31 V vs. RHE and small Tafel slopes of 38.3 mV dec−1 in alkaline media. And it shows the extremely low overpotential of 229 and 329 mV at 100 and 500 mA cm−2. Moreover, its current density can reach more than 500 mA cm−2 at the potentials of 1.645 V vs. RHE at 0.8 M methanol/1 M KOH electrolyte, and it shows very good long-term stability at large current density. This heterogeneous arrays electrocatalysts may play a positive role in energy conversion and storage process.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.