TeachText: CrossModal text-video retrieval through generalized distillation

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ioana Croitoru , Simion-Vlad Bogolin , Marius Leordeanu , Hailin Jin , Andrew Zisserman , Yang Liu , Samuel Albanie
{"title":"TeachText: CrossModal text-video retrieval through generalized distillation","authors":"Ioana Croitoru ,&nbsp;Simion-Vlad Bogolin ,&nbsp;Marius Leordeanu ,&nbsp;Hailin Jin ,&nbsp;Andrew Zisserman ,&nbsp;Yang Liu ,&nbsp;Samuel Albanie","doi":"10.1016/j.artint.2024.104235","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, considerable progress on the task of text-video retrieval has been achieved by leveraging large-scale pretraining on visual and audio datasets to construct powerful video encoders. By contrast, despite the natural symmetry, the design of effective algorithms for exploiting large-scale language pretraining remains under-explored. In this work, we investigate the design of such algorithms and propose a novel generalized distillation method, <span>TeachText</span>, which leverages complementary cues from multiple text encoders to provide an enhanced supervisory signal to the retrieval model. <span>TeachText</span> yields significant gains on a number of video retrieval benchmarks without incurring additional computational overhead during inference and was used to produce the winning entry in the Condensed Movie Challenge at ICCV 2021. We show how <span>TeachText</span> can be extended to include multiple video modalities, reducing computational cost at inference without compromising performance. Finally, we demonstrate the application of our method to the task of removing noisy descriptions from the training partitions of retrieval datasets to improve performance. Code and data can be found at <span><span>https://www.robots.ox.ac.uk/~vgg/research/teachtext/</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"338 ","pages":"Article 104235"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370224001711","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, considerable progress on the task of text-video retrieval has been achieved by leveraging large-scale pretraining on visual and audio datasets to construct powerful video encoders. By contrast, despite the natural symmetry, the design of effective algorithms for exploiting large-scale language pretraining remains under-explored. In this work, we investigate the design of such algorithms and propose a novel generalized distillation method, TeachText, which leverages complementary cues from multiple text encoders to provide an enhanced supervisory signal to the retrieval model. TeachText yields significant gains on a number of video retrieval benchmarks without incurring additional computational overhead during inference and was used to produce the winning entry in the Condensed Movie Challenge at ICCV 2021. We show how TeachText can be extended to include multiple video modalities, reducing computational cost at inference without compromising performance. Finally, we demonstrate the application of our method to the task of removing noisy descriptions from the training partitions of retrieval datasets to improve performance. Code and data can be found at https://www.robots.ox.ac.uk/~vgg/research/teachtext/.
TeachText:通过概括提炼实现跨模态文本-视频检索
近年来,通过对视觉和音频数据集进行大规模预训练来构建功能强大的视频编码器,文本-视频检索任务取得了长足的进步。相比之下,尽管存在天然的对称性,但利用大规模语言预训练设计有效算法的工作仍未得到充分探索。在这项工作中,我们对此类算法的设计进行了研究,并提出了一种新颖的广义蒸馏方法 TeachText,该方法利用来自多个文本编码器的互补线索,为检索模型提供增强的监督信号。TeachText 在一些视频检索基准测试中取得了显著的收益,而不会在推理过程中产生额外的计算开销,并在 2021 年 ICCV 的 "浓缩电影挑战赛 "中获得了优胜。我们展示了 TeachText 如何扩展到多种视频模式,从而在不影响性能的情况下降低推理时的计算成本。最后,我们演示了如何将我们的方法应用于从检索数据集的训练分区中去除噪声描述以提高性能的任务。代码和数据见 https://www.robots.ox.ac.uk/~vgg/research/teachtext/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence
Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
11.20
自引率
1.40%
发文量
118
审稿时长
8 months
期刊介绍: The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信