Intensified liquid-liquid extractions by continuous flows in small channels

IF 3.8 3区 工程技术 Q3 ENERGY & FUELS
Panagiota Angeli
{"title":"Intensified liquid-liquid extractions by continuous flows in small channels","authors":"Panagiota Angeli","doi":"10.1016/j.cep.2024.110045","DOIUrl":null,"url":null,"abstract":"<div><div>Separations underpin materials processing and purification in many industrial sectors. Solvent extractions are particularly widespread because of their efficiency, selectivity and versatility in diverse application areas. Intensified continuous separations in small channels have emerged as a transformative solution for the transition to sustainable extractions, while they enable the industrial uptake of novel non-petroleum based solvents. The paper discusses recent work on intensified extractions in small channels using novel solvents such as ionic liquids and aqueous biphasic systems. Results on the two-phase hydrodynamics and their effects on extraction efficiency and mass transfer are presented for the separations of metals and of biomolecules. In the future, integration of sensors for in-line measurements coupled with predictive models will enable dynamic and adaptive process operations for continuous small channel extractions, forming the basis for development of digital twins for separations.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"206 ","pages":"Article 110045"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270124003830","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Separations underpin materials processing and purification in many industrial sectors. Solvent extractions are particularly widespread because of their efficiency, selectivity and versatility in diverse application areas. Intensified continuous separations in small channels have emerged as a transformative solution for the transition to sustainable extractions, while they enable the industrial uptake of novel non-petroleum based solvents. The paper discusses recent work on intensified extractions in small channels using novel solvents such as ionic liquids and aqueous biphasic systems. Results on the two-phase hydrodynamics and their effects on extraction efficiency and mass transfer are presented for the separations of metals and of biomolecules. In the future, integration of sensors for in-line measurements coupled with predictive models will enable dynamic and adaptive process operations for continuous small channel extractions, forming the basis for development of digital twins for separations.

Abstract Image

通过小通道中的连续流强化液-液萃取
分离是许多工业领域材料加工和提纯的基础。溶剂萃取因其效率高、选择性强、应用领域广泛而尤为普及。在小通道中进行强化连续分离已成为向可持续萃取过渡的变革性解决方案,同时也使工业界能够采用新型非石油溶剂。本文讨论了使用离子液体和水性双相体系等新型溶剂在小通道中进行强化萃取的最新研究成果。论文介绍了金属和生物分子分离过程中的两相流体力学及其对萃取效率和传质的影响。未来,将用于在线测量的传感器与预测模型相结合,可实现连续小通道萃取的动态和自适应过程操作,为开发分离的数字双胞胎奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
9.30%
发文量
408
审稿时长
49 days
期刊介绍: Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信