Chun Chen , Xiang Wang , Hua Huang , Jialin Niu , Jian-Feng Nie , Guangyin Yuan
{"title":"Ageing response and microstructural evolution of biodegradable Zn-1.5Cu-1.5Ag alloy","authors":"Chun Chen , Xiang Wang , Hua Huang , Jialin Niu , Jian-Feng Nie , Guangyin Yuan","doi":"10.1016/j.matdes.2024.113448","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the age-hardening response and microstructural evolution of an as-extruded biodegradable Zn-1.5Cu-1.5Ag (wt.%) alloy during ageing at 25 ℃, 100 ℃, 150 ℃ and 200 ℃ are studied. The age-hardening response is generally weak, and the largest hardness increment is observed after ageing at 150 ℃ for 24 hours. Discontinuous precipitation (DP) and continuous precipitation (CP) occur competitively during ageing at 150 ℃ or 200 ℃, while only DP is observed during ageing at 25 ℃ or 100 ℃. All the precipitates formed through DP and CP are identified as <em>ε</em>-(Ag, Cu)Zn<sub>4</sub> that has a hexagonal structure. Analysis of possible strengthening mechanisms shows that grain boundary strengthening and precipitation hardening contribute to the major part of yield strength in the as-extruded condition. Ageing treatments generate a limited increment in yield strength due to the small difference between the hardness of <em>ε</em>-(Ag, Cu)Zn<sub>4</sub> and the Zn matrix and the reduced solid solution strengthening effect. Artificial ageing at 150 ℃ for 48 hours effectively improves the stability of the mechanical properties of the as-extruded Zn-1.5Cu-1.5Ag alloy. This process fully depletes the excessive solutes in the supersaturated Zn matrix, ensuring that the alloy maintains consistent mechanical properties when stored at room temperature.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"248 ","pages":"Article 113448"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524008232","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the age-hardening response and microstructural evolution of an as-extruded biodegradable Zn-1.5Cu-1.5Ag (wt.%) alloy during ageing at 25 ℃, 100 ℃, 150 ℃ and 200 ℃ are studied. The age-hardening response is generally weak, and the largest hardness increment is observed after ageing at 150 ℃ for 24 hours. Discontinuous precipitation (DP) and continuous precipitation (CP) occur competitively during ageing at 150 ℃ or 200 ℃, while only DP is observed during ageing at 25 ℃ or 100 ℃. All the precipitates formed through DP and CP are identified as ε-(Ag, Cu)Zn4 that has a hexagonal structure. Analysis of possible strengthening mechanisms shows that grain boundary strengthening and precipitation hardening contribute to the major part of yield strength in the as-extruded condition. Ageing treatments generate a limited increment in yield strength due to the small difference between the hardness of ε-(Ag, Cu)Zn4 and the Zn matrix and the reduced solid solution strengthening effect. Artificial ageing at 150 ℃ for 48 hours effectively improves the stability of the mechanical properties of the as-extruded Zn-1.5Cu-1.5Ag alloy. This process fully depletes the excessive solutes in the supersaturated Zn matrix, ensuring that the alloy maintains consistent mechanical properties when stored at room temperature.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.