Fan Wang , Xiaodi Dong , Guangyi Liu , Jing-Hui Gao , Xu Wang , Jun-Wei Zha
{"title":"Dual covalent bond induced high thermally conductive polyimide composite films based on CNT@CN complex filler","authors":"Fan Wang , Xiaodi Dong , Guangyi Liu , Jing-Hui Gao , Xu Wang , Jun-Wei Zha","doi":"10.1016/j.compscitech.2024.110963","DOIUrl":null,"url":null,"abstract":"<div><div>Polyimide (PI) possesses excellent high-temperature resistance, insulation properties, and mechanical properties, making it widely used as a flexible printed circuit board substrate and high-temperature electrical insulation material. However, the irregular arrangement of PI molecules results in a relatively low thermal conductivity. This work utilizes the active groups on the surface of carboxylated multi-walled carbon nanotubes (MWCNTs) and carbon nitride nanosheets (CNNS) to obtain CNTs@CN complex fillers containing covalent bonds. The thermal conductivity of CNTs@CN/PI with double covalent bonds can be up to 6.63 W m<sup>−1</sup> K<sup>−1</sup>. The covalent bonds between fillers and fillers as well as between fillers and the matrix provide efficient and continuous pathways for phonon transmission. Additionally, finite element analysis further reveals the heat transfer mechanism of the CNTs@CN/PI composite film. Therefore, this will provide a feasible solution to enhance the thermal conductivity of PI, making it more promising for applications in electronic devices.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"259 ","pages":"Article 110963"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824005335","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Polyimide (PI) possesses excellent high-temperature resistance, insulation properties, and mechanical properties, making it widely used as a flexible printed circuit board substrate and high-temperature electrical insulation material. However, the irregular arrangement of PI molecules results in a relatively low thermal conductivity. This work utilizes the active groups on the surface of carboxylated multi-walled carbon nanotubes (MWCNTs) and carbon nitride nanosheets (CNNS) to obtain CNTs@CN complex fillers containing covalent bonds. The thermal conductivity of CNTs@CN/PI with double covalent bonds can be up to 6.63 W m−1 K−1. The covalent bonds between fillers and fillers as well as between fillers and the matrix provide efficient and continuous pathways for phonon transmission. Additionally, finite element analysis further reveals the heat transfer mechanism of the CNTs@CN/PI composite film. Therefore, this will provide a feasible solution to enhance the thermal conductivity of PI, making it more promising for applications in electronic devices.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.