{"title":"Ensuring patient safety in IoMT: A systematic literature review of behavior-based intrusion detection systems","authors":"Jordi Doménech , Isabel V. Martin-Faus , Saber Mhiri , Josep Pegueroles","doi":"10.1016/j.iot.2024.101420","DOIUrl":null,"url":null,"abstract":"<div><div>Integrating Internet of Medical Things (IoMT) devices into healthcare has enhanced patient care, enabling real-time data exchange and remote monitoring, yet it also presents substantial security risks. Addressing these risks requires robust Intrusion Detection Systems (IDS). While existing studies target this topic, a systematic literature review focused on the current state and advancements in Behavior-based Intrusion Detection Systems for IoMT environments is necessary. This systematic literature review analyzes 81 studies from the past five years, answering three key research questions: (1) What are the Behavior-based IDS currently used in healthcare? (2) How do the detected attacks impact patient safety? (3) Do these IDS include prevention measures? The findings indicate that nearly 84% of the reviewed studies utilize Artificial Intelligence (AI) techniques for threat detection. However, significant challenges persist, such as the scarcity of IoMT-specific datasets, limited focus on patient safety, and the absence of comprehensive prevention and mitigation strategies. This review highlights the need for more robust, patient-centric security solutions. In particular, developing IoMT-specific datasets and enhancing defensive mechanisms are essential to meet the unique security requirements of IoMT environments.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"28 ","pages":"Article 101420"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660524003615","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Integrating Internet of Medical Things (IoMT) devices into healthcare has enhanced patient care, enabling real-time data exchange and remote monitoring, yet it also presents substantial security risks. Addressing these risks requires robust Intrusion Detection Systems (IDS). While existing studies target this topic, a systematic literature review focused on the current state and advancements in Behavior-based Intrusion Detection Systems for IoMT environments is necessary. This systematic literature review analyzes 81 studies from the past five years, answering three key research questions: (1) What are the Behavior-based IDS currently used in healthcare? (2) How do the detected attacks impact patient safety? (3) Do these IDS include prevention measures? The findings indicate that nearly 84% of the reviewed studies utilize Artificial Intelligence (AI) techniques for threat detection. However, significant challenges persist, such as the scarcity of IoMT-specific datasets, limited focus on patient safety, and the absence of comprehensive prevention and mitigation strategies. This review highlights the need for more robust, patient-centric security solutions. In particular, developing IoMT-specific datasets and enhancing defensive mechanisms are essential to meet the unique security requirements of IoMT environments.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.