Theoretical insights into the essential role of weak interactions in the electrocatalytic reduction of nitrobenzene: Ag-anchored graphene electrode

IF 2 3区 化学 Q4 CHEMISTRY, PHYSICAL
Jiake Fan, Lei Yang, Lixin Ye, Weihua Zhu
{"title":"Theoretical insights into the essential role of weak interactions in the electrocatalytic reduction of nitrobenzene: Ag-anchored graphene electrode","authors":"Jiake Fan,&nbsp;Lei Yang,&nbsp;Lixin Ye,&nbsp;Weihua Zhu","doi":"10.1016/j.chemphys.2024.112513","DOIUrl":null,"url":null,"abstract":"<div><div>We used identical transition metal dimer with six coordinated nitrogen atoms to dope a monolayer graphene to construct homonuclear double-atom catalysts (DACs) and probed their catalytic efficiency for nitrobenzene reduction reaction (Ph-NO<sub>2</sub>RR) using density functional theory. The findings predict that Ag<sub>2</sub>N<sub>6</sub>@G possesses significant activity and selectivity, whose potential determining step (PDS) and competitive hydrogen evolution reaction (HER) process have the Gibbs free energy changes of 0.31 and −1.49 eV, respectively. An analysis of IRI (interaction region indicator) and IGMH (independent gradient model (IGM) based on Hirshfeld partition of molecular density) indicates a pronounced van der Waals interactions between Ph-NO<sub>2</sub> and Ag<sub>2</sub>N<sub>6</sub>@G due to the benzene ring. When silver atom is introduced, the Gibbs free energy change of its PDS is reduced by 0.09 eV compared to the pure graphene as a catalyst. Through IRI, IGMH, and charge transfer analysis, it is confirmed that the van der Waals interactions between the catalyst and nitrobenzene crucially influences the activation of Ph-NO<sub>2</sub>.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"589 ","pages":"Article 112513"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010424003422","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We used identical transition metal dimer with six coordinated nitrogen atoms to dope a monolayer graphene to construct homonuclear double-atom catalysts (DACs) and probed their catalytic efficiency for nitrobenzene reduction reaction (Ph-NO2RR) using density functional theory. The findings predict that Ag2N6@G possesses significant activity and selectivity, whose potential determining step (PDS) and competitive hydrogen evolution reaction (HER) process have the Gibbs free energy changes of 0.31 and −1.49 eV, respectively. An analysis of IRI (interaction region indicator) and IGMH (independent gradient model (IGM) based on Hirshfeld partition of molecular density) indicates a pronounced van der Waals interactions between Ph-NO2 and Ag2N6@G due to the benzene ring. When silver atom is introduced, the Gibbs free energy change of its PDS is reduced by 0.09 eV compared to the pure graphene as a catalyst. Through IRI, IGMH, and charge transfer analysis, it is confirmed that the van der Waals interactions between the catalyst and nitrobenzene crucially influences the activation of Ph-NO2.
关于弱相互作用在硝基苯电催化还原中的重要作用的理论见解:琼脂锚定石墨烯电极
我们利用具有六个配位氮原子的相同过渡金属二聚体掺杂单层石墨烯构建了同核双原子催化剂(DACs),并利用密度泛函理论探测了它们对硝基苯还原反应(Ph-NO2RR)的催化效率。研究结果表明,Ag2N6@G 具有显著的活性和选择性,其潜在决定步骤(PDS)和竞争性氢进化反应(HER)过程的吉布斯自由能变化分别为 0.31 和 -1.49eV。对 IRI(相互作用区域指示器)和 IGMH(基于分子密度 Hirshfeld 分配的独立梯度模型)的分析表明,由于苯环的存在,Ph-NO2 和 Ag2N6@G 之间存在明显的范德华相互作用。引入银原子后,其 PDS 的吉布斯自由能变化比作为催化剂的纯石墨烯降低了 0.09 eV。通过 IRI、IGMH 和电荷转移分析,可以证实催化剂与硝基苯之间的范德华相互作用对 Ph-NO2 的活化有至关重要的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信