Natallia V. Dubashynskaya , Valentina A. Petrova , Irina S. Ustyukhina , Andrey V. Sgibnev , Yuliya I. Cherkasova , Yuliya A. Nashchekina , Elena N. Vlasova , Dmitry P. Romanov , Yury A. Skorik
{"title":"Mucoadhesive polyelectrolyte complexes of fucoidan and chitin nanowhiskers to prolong the antiprotozoal activity of metronidazole","authors":"Natallia V. Dubashynskaya , Valentina A. Petrova , Irina S. Ustyukhina , Andrey V. Sgibnev , Yuliya I. Cherkasova , Yuliya A. Nashchekina , Elena N. Vlasova , Dmitry P. Romanov , Yury A. Skorik","doi":"10.1016/j.carbpol.2024.122975","DOIUrl":null,"url":null,"abstract":"<div><div>The improvement of the specific pharmacological activity of agents with antimicrobial and antiprotozoal properties (e.g. metronidazole, MET) is of interest for clinical applications in the treatment of bacterial infections. In this work, we prepared the polyelectrolyte complexes (PEC) based on chitin nanowhiskers (CNW) and fucoidan (FUC) with hydrodynamic diameters of 244 and 816 nm, a ζ-potential of about −22 mV and good mucoadhesive properties. The incorporation of MET into PEC particles promoted the sustained release of MET for 10 h and maintained the antiprotozoal activity against clinical isolates of <em>Trichomonas vaginalis</em> for up to 10 h. At concentrations of 1–3 mg/mL, the CWN-FUC-MET particles showed no cytotoxicity (HeLa cell line). The sustained drug release rate, combined with pronounced mucoadhesive properties, improved pharmacological activity, and non-cytotoxicity makes the developed biopolymer delivery systems promising candidates for further clinical trials.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"349 ","pages":"Article 122975"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724012013","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The improvement of the specific pharmacological activity of agents with antimicrobial and antiprotozoal properties (e.g. metronidazole, MET) is of interest for clinical applications in the treatment of bacterial infections. In this work, we prepared the polyelectrolyte complexes (PEC) based on chitin nanowhiskers (CNW) and fucoidan (FUC) with hydrodynamic diameters of 244 and 816 nm, a ζ-potential of about −22 mV and good mucoadhesive properties. The incorporation of MET into PEC particles promoted the sustained release of MET for 10 h and maintained the antiprotozoal activity against clinical isolates of Trichomonas vaginalis for up to 10 h. At concentrations of 1–3 mg/mL, the CWN-FUC-MET particles showed no cytotoxicity (HeLa cell line). The sustained drug release rate, combined with pronounced mucoadhesive properties, improved pharmacological activity, and non-cytotoxicity makes the developed biopolymer delivery systems promising candidates for further clinical trials.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.