Nicolò Perello , Andrea Trucchia , Mirko D’Andrea , Silvia Degli Esposti , Paolo Fiorucci , Andrea Gollini , Dario Negro
{"title":"An adaptable dead fuel moisture model for various fuel types and temporal scales tailored for wildfire danger assessment","authors":"Nicolò Perello , Andrea Trucchia , Mirko D’Andrea , Silvia Degli Esposti , Paolo Fiorucci , Andrea Gollini , Dario Negro","doi":"10.1016/j.envsoft.2024.106254","DOIUrl":null,"url":null,"abstract":"<div><div>Estimating the Dead Fuel Moisture Content (DFMC) is crucial in wildfire risk management, representing a key component in forest fire danger rating systems and wildfire simulation models. DFMC fluctuates sub-daily and spatially, influenced by local weather and fuel characteristics. This necessitates models that provide sub-daily fuel moisture conditions for improving wildfire risk management. Many forest fire danger rating systems typically rely on daily fuel moisture models that overlook local fuel characteristics, with consequent impact on wildfire management. The semi-empirical parametric DFMC model proposed addresses these issues by providing hourly dead fuel moisture dynamics, with specific parameters to consider local fuel characteristics. A calibration framework is proposed by adopting Particle Swarm Optimization-type algorithm. In the present study, the calibration framework has been tested by using hourly 10-h fuel sticks measurements. Implementing this model in forest fire danger rating systems would enhance detail in forest fire danger conditions, advancing wildfire risk management.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"183 ","pages":"Article 106254"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224003153","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Estimating the Dead Fuel Moisture Content (DFMC) is crucial in wildfire risk management, representing a key component in forest fire danger rating systems and wildfire simulation models. DFMC fluctuates sub-daily and spatially, influenced by local weather and fuel characteristics. This necessitates models that provide sub-daily fuel moisture conditions for improving wildfire risk management. Many forest fire danger rating systems typically rely on daily fuel moisture models that overlook local fuel characteristics, with consequent impact on wildfire management. The semi-empirical parametric DFMC model proposed addresses these issues by providing hourly dead fuel moisture dynamics, with specific parameters to consider local fuel characteristics. A calibration framework is proposed by adopting Particle Swarm Optimization-type algorithm. In the present study, the calibration framework has been tested by using hourly 10-h fuel sticks measurements. Implementing this model in forest fire danger rating systems would enhance detail in forest fire danger conditions, advancing wildfire risk management.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.