Do Thi Cam Van , Dang Thi Mai , Bui Thi Thu Uyen , Nguyen Thi Phuong Dung , Lu Thi Thu Ha , Nguyen Thi Lieu , Dang Nhat Minh , Tran Dang Thuan , Le Truong Giang
{"title":"Sustainable remediation of piggery wastewater using a novel mixotrophic Chlorella sorokiniana Cbeo for high value biomass production","authors":"Do Thi Cam Van , Dang Thi Mai , Bui Thi Thu Uyen , Nguyen Thi Phuong Dung , Lu Thi Thu Ha , Nguyen Thi Lieu , Dang Nhat Minh , Tran Dang Thuan , Le Truong Giang","doi":"10.1016/j.bej.2024.109555","DOIUrl":null,"url":null,"abstract":"<div><div>Piggery wastewater (PW) contains high density of organic carbon (COD), nitrogen (NH<sub>4</sub><sup>+</sup>-N and TN) and phosphorous (TP), which are essential nutrients for microalgae growth. This work was attempted to use a newly isolate <em>Chlorella sorokiniana C</em><sub><em>beo</em></sub> for recovery these compounds into its biomass via mixotrophic cultivation. Critical factors including level of ammonia, C/N ratio, pH, light intensity, sterilized/unsterilized media, and indoor/outdoor cultivations affecting biomass production and nutrients removal efficiencies were investigated. Data revealed that <em>C</em>. <em>sorokiniana C</em><sub><em>beo</em></sub> achieved the optimal growth in the unsterilized medium at NH<sub>4</sub><sup>+</sup>-N concentration, C/N ratio, initial pH, and light intensity of 250 mg/L, 10/1, 7, and 150 μmol/m<sup>2</sup>/s, respectively. Under the optimal conditions, dry cell weight (DCW) reached the maximal level of 4.30 g/L, which was slightly higher than 4.14 g/L determined for the sterilized medium. In 30 L-scale photobioreactor, <em>C. sorokiniana C</em><sub><em>beo</em></sub> grown under indoor and outdoor achieved DCW of 3.61 and 3.19 g/L, respectively. COD, NH<sub>4</sub><sup>+</sup>-N, TN, TP removal efficiencies for both conditions were determined as 91.9–96.7, 96.6–99.7, 96.2–96.4, and 98.2–100 %, respectively. The <em>C. sorokiniana C</em><sub><em>beo</em></sub> biomass contained 14–27 % lipid, 25–32 % carbohydrate, 44–48 % protein, and 0.25–0.97 % lutein. Interestingly, α-Linolenic acid (C18:3n3) was 19.84 –27.0 % of the total fatty acids. <em>C. sorokiniana C</em><sub><em>beo</em></sub> is the promising algal strain for development of a sustainable biorefinery of PW.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"213 ","pages":"Article 109555"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X24003425","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Piggery wastewater (PW) contains high density of organic carbon (COD), nitrogen (NH4+-N and TN) and phosphorous (TP), which are essential nutrients for microalgae growth. This work was attempted to use a newly isolate Chlorella sorokiniana Cbeo for recovery these compounds into its biomass via mixotrophic cultivation. Critical factors including level of ammonia, C/N ratio, pH, light intensity, sterilized/unsterilized media, and indoor/outdoor cultivations affecting biomass production and nutrients removal efficiencies were investigated. Data revealed that C. sorokiniana Cbeo achieved the optimal growth in the unsterilized medium at NH4+-N concentration, C/N ratio, initial pH, and light intensity of 250 mg/L, 10/1, 7, and 150 μmol/m2/s, respectively. Under the optimal conditions, dry cell weight (DCW) reached the maximal level of 4.30 g/L, which was slightly higher than 4.14 g/L determined for the sterilized medium. In 30 L-scale photobioreactor, C. sorokiniana Cbeo grown under indoor and outdoor achieved DCW of 3.61 and 3.19 g/L, respectively. COD, NH4+-N, TN, TP removal efficiencies for both conditions were determined as 91.9–96.7, 96.6–99.7, 96.2–96.4, and 98.2–100 %, respectively. The C. sorokiniana Cbeo biomass contained 14–27 % lipid, 25–32 % carbohydrate, 44–48 % protein, and 0.25–0.97 % lutein. Interestingly, α-Linolenic acid (C18:3n3) was 19.84 –27.0 % of the total fatty acids. C. sorokiniana Cbeo is the promising algal strain for development of a sustainable biorefinery of PW.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.