Yulun Wu , Zhao Li , Xin Wang , Zaiyin Yu , Weiguang Mao , Cai Cheng , Guanmou Che , Jun Cheng
{"title":"Developing an off-site bicarbonation absorber system to promote microalgal fixation of CO2 in exhaust gas from biogas upgrading","authors":"Yulun Wu , Zhao Li , Xin Wang , Zaiyin Yu , Weiguang Mao , Cai Cheng , Guanmou Che , Jun Cheng","doi":"10.1016/j.bej.2024.109558","DOIUrl":null,"url":null,"abstract":"<div><div>In order to address the risk of explosion due to CH<sub>4</sub> from exhaust gas produced during biogas upgrading in closed carbon fixation systems employing photosynthetic microalgae, an off-site bicarbonation absorber system was developed to promote microalgal CO<sub>2</sub> fixation under atmospheric pressure. The abundant CO<sub>2</sub> in the biogas upgrading exhaust gas (≥90 vol% CO<sub>2</sub>, ≤10 vol% CH<sub>4</sub>) reacted with a Na<sub>2</sub>CO<sub>3</sub> solution in the off-site bicarbonation absorber to produce NaHCO<sub>3</sub>, which was used as carbon source for microalgal growth in enclosed column photobioreactors. After the reaction, CH<sub>4</sub> was discharged outside the bicarbonation absorber because it did not react with the Na<sub>2</sub>CO<sub>3</sub> solution and was extremely difficult to dissolve in water, thereby avoiding the explosion risk due to accumulated CH<sub>4</sub> in the enclosed column photobioreactors. The experimental results showed that the <em>Spirulina</em> growth rate first increased 1.7 times, peaking at 0.6 g/L/d, and then decreased when the bicarbonation reaction time (optimal 50 min), absorber diameter (optimal 10 cm), initial Na<sub>2</sub>CO<sub>3</sub> concentration (optimal 173 mM), and exhaust gas aeration rate (optimal 100 sccm) increased. The optimal molar ratio of NaHCO<sub>3</sub> to total inorganic carbon in the bicarbonation absorber solution reached 79 %. The sufficient HCO<sub>3</sub><sup>-</sup> supply and suitable pH of the microalgal solution improved the synthesis of photosynthetic pigments in the microalgal cells and enhanced their photochemical efficiency and carbon sequestration rates.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"213 ","pages":"Article 109558"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X24003450","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In order to address the risk of explosion due to CH4 from exhaust gas produced during biogas upgrading in closed carbon fixation systems employing photosynthetic microalgae, an off-site bicarbonation absorber system was developed to promote microalgal CO2 fixation under atmospheric pressure. The abundant CO2 in the biogas upgrading exhaust gas (≥90 vol% CO2, ≤10 vol% CH4) reacted with a Na2CO3 solution in the off-site bicarbonation absorber to produce NaHCO3, which was used as carbon source for microalgal growth in enclosed column photobioreactors. After the reaction, CH4 was discharged outside the bicarbonation absorber because it did not react with the Na2CO3 solution and was extremely difficult to dissolve in water, thereby avoiding the explosion risk due to accumulated CH4 in the enclosed column photobioreactors. The experimental results showed that the Spirulina growth rate first increased 1.7 times, peaking at 0.6 g/L/d, and then decreased when the bicarbonation reaction time (optimal 50 min), absorber diameter (optimal 10 cm), initial Na2CO3 concentration (optimal 173 mM), and exhaust gas aeration rate (optimal 100 sccm) increased. The optimal molar ratio of NaHCO3 to total inorganic carbon in the bicarbonation absorber solution reached 79 %. The sufficient HCO3- supply and suitable pH of the microalgal solution improved the synthesis of photosynthetic pigments in the microalgal cells and enhanced their photochemical efficiency and carbon sequestration rates.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.