Wenhua Zhou , Xiaoxuan Li , Chao Chen , Teng Guo , Jianghao Wang , Kaige Wang , Bolong Li , Zhenyu Zhang , Jie Fu
{"title":"Sn modified carbon support PdCo bimetallic oxide for boosting low-temperature dehydrogenation of dodecahydro-N-ethylcarbazole","authors":"Wenhua Zhou , Xiaoxuan Li , Chao Chen , Teng Guo , Jianghao Wang , Kaige Wang , Bolong Li , Zhenyu Zhang , Jie Fu","doi":"10.1016/j.fuel.2024.133718","DOIUrl":null,"url":null,"abstract":"<div><div>Liquid organic hydrogen carriers (LOHCs) have garnered considerable attention and have undergone extensive studies owing to their high hydrogen storage density and ease of storage and transportation. Research has shown that carbon-supported bimetallic alloys exhibit exceptional performance as catalysts for low-temperature dehydrogenation. Nevertheless, developing high-efficiency carbon support catalysts and revealing the interaction between active metals and support remains challenging but significant. In this work, a cost-effective metal-modified activated carbon (AC) was synthesized and loaded with PdCoO active sites for low-temperature dehydrogenation of dodecahydro-N-ethylcarbazole (12H-NECZ) to produce hydrogen. The results show that: (1) Introducing tin (Sn) into the AC support to form highly dispersed PdCoO/Sn<sub>2</sub>-C improves the pore distribution and size of the catalyst, promoting the dispersion of active metals on the surface; (2) The interface effect between PdCoOx and Sn-C supports effectively regulates the electron transfer inside the catalyst, enhances the synergistic effect between metals, and reduces electron transfer resistance, thereby improving dehydrogenation catalytic activity. The results show that at 140 °C, 12H-NECZ was completely dehydrogenated after 8 h, with a selectivity of 92.5%, while the palladium loading was only 2.2 wt%. This study provides a suitable method for the targeted design of catalysts by altering the electronic effects of supports.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"382 ","pages":"Article 133718"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236124028679","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Liquid organic hydrogen carriers (LOHCs) have garnered considerable attention and have undergone extensive studies owing to their high hydrogen storage density and ease of storage and transportation. Research has shown that carbon-supported bimetallic alloys exhibit exceptional performance as catalysts for low-temperature dehydrogenation. Nevertheless, developing high-efficiency carbon support catalysts and revealing the interaction between active metals and support remains challenging but significant. In this work, a cost-effective metal-modified activated carbon (AC) was synthesized and loaded with PdCoO active sites for low-temperature dehydrogenation of dodecahydro-N-ethylcarbazole (12H-NECZ) to produce hydrogen. The results show that: (1) Introducing tin (Sn) into the AC support to form highly dispersed PdCoO/Sn2-C improves the pore distribution and size of the catalyst, promoting the dispersion of active metals on the surface; (2) The interface effect between PdCoOx and Sn-C supports effectively regulates the electron transfer inside the catalyst, enhances the synergistic effect between metals, and reduces electron transfer resistance, thereby improving dehydrogenation catalytic activity. The results show that at 140 °C, 12H-NECZ was completely dehydrogenated after 8 h, with a selectivity of 92.5%, while the palladium loading was only 2.2 wt%. This study provides a suitable method for the targeted design of catalysts by altering the electronic effects of supports.
期刊介绍:
The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.