{"title":"Evaluating tracking bifacial solar PV based agrivoltaics system across the UK","authors":"Shanza Neda Hussain, Aritra Ghosh","doi":"10.1016/j.solener.2024.113102","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing competition of land for various purposes has led to the consideration of using it effectively while catering to<!--> <!-->energy and food security. This study investigates the integration of photovoltaics (PV) systems with farmlands that cultivate potatoes in the UK, analysing energy production and crop yields across eleven regions. Using PVsyst for solar simulations and DSSAT for crop modelling for various PV setups including both monofacial and bifacial systems in both fixed and tracking configurations were examined. This work revealed significant regional disparities in solar irradiance, temperature, and precipitation, impacting both electricity and agricultural output. This study indicates that tracking bifacial 440Wp systems (TB) generated an average of 24.6% more energy than static bifacial (SB) systems with the highest difference of 26.37% in Brighton but at the cost of reduced crop yields. The land equivalent ratio (LER) varies, with SB systems generally achieving higher values with the highest obtained value of 1.39 reflecting their balance between energy and crop production. Financial analysis demonstrates that same area tracking monofacial (SATM) configurations offer the highest internal rate of return (IRR) though there is a huge variation in the outcomes when comparing the lowest and highest there is a difference of 41.16%. The levelized cost of electricity (LCOE) was the lowest, with regions receiving more irradiance (Brighton) indicating the increased economic feasibility for the proposed system. This evaluation emphasizes the potential of agrivoltaics to optimise land use for dual purposes, promoting sustainable energy and food production while highlighting the importance of considering local climatic conditions and system design to utilise the benefits of agrivoltaics.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113102"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X24007977","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing competition of land for various purposes has led to the consideration of using it effectively while catering to energy and food security. This study investigates the integration of photovoltaics (PV) systems with farmlands that cultivate potatoes in the UK, analysing energy production and crop yields across eleven regions. Using PVsyst for solar simulations and DSSAT for crop modelling for various PV setups including both monofacial and bifacial systems in both fixed and tracking configurations were examined. This work revealed significant regional disparities in solar irradiance, temperature, and precipitation, impacting both electricity and agricultural output. This study indicates that tracking bifacial 440Wp systems (TB) generated an average of 24.6% more energy than static bifacial (SB) systems with the highest difference of 26.37% in Brighton but at the cost of reduced crop yields. The land equivalent ratio (LER) varies, with SB systems generally achieving higher values with the highest obtained value of 1.39 reflecting their balance between energy and crop production. Financial analysis demonstrates that same area tracking monofacial (SATM) configurations offer the highest internal rate of return (IRR) though there is a huge variation in the outcomes when comparing the lowest and highest there is a difference of 41.16%. The levelized cost of electricity (LCOE) was the lowest, with regions receiving more irradiance (Brighton) indicating the increased economic feasibility for the proposed system. This evaluation emphasizes the potential of agrivoltaics to optimise land use for dual purposes, promoting sustainable energy and food production while highlighting the importance of considering local climatic conditions and system design to utilise the benefits of agrivoltaics.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass