S. Pradhan , S. Kundu , A. Bhattacharjee , S. Mondal , P. Chakrabarti , S. Maity
{"title":"Thermal and optical analysis of industrial photovoltaic modules under partial shading in diverse environmental conditions","authors":"S. Pradhan , S. Kundu , A. Bhattacharjee , S. Mondal , P. Chakrabarti , S. Maity","doi":"10.1016/j.solener.2024.113097","DOIUrl":null,"url":null,"abstract":"<div><div>The manuscript offers a fresh perspective on understanding the impact of shading on the overall performance of solar cells. While the term “hot spot” is commonly used to describe a location where a cell or module can experience significant damage, this study devotes attention to several comprehensive analyses that could prove valuable for module performance, considering the impacts of<!--> <!-->shading, UV radiation, and thermal. This article explores the relationship between spot shading and percentage shadings and their effects on module layers’ internal temperature, stress, and deformation. The findings reveal that shading within 50–70% (precisely around 62.5% for this study) increases maximum module temperature, stress, and deformation. Additionally, spot shading has a more pronounced effect on the corner positions of the PV module. Including electrical measurements such as open circuit voltage, short circuit current and maximum power provides valuable insights. This work also highlights the limiting of PV module performance due to ultraviolet (UV) radiation, with even greater acceleration observed in partially damaged cells.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113097"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X24007928","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The manuscript offers a fresh perspective on understanding the impact of shading on the overall performance of solar cells. While the term “hot spot” is commonly used to describe a location where a cell or module can experience significant damage, this study devotes attention to several comprehensive analyses that could prove valuable for module performance, considering the impacts of shading, UV radiation, and thermal. This article explores the relationship between spot shading and percentage shadings and their effects on module layers’ internal temperature, stress, and deformation. The findings reveal that shading within 50–70% (precisely around 62.5% for this study) increases maximum module temperature, stress, and deformation. Additionally, spot shading has a more pronounced effect on the corner positions of the PV module. Including electrical measurements such as open circuit voltage, short circuit current and maximum power provides valuable insights. This work also highlights the limiting of PV module performance due to ultraviolet (UV) radiation, with even greater acceleration observed in partially damaged cells.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass