{"title":"Innovative slime-infused glazing systems: energy efficiency, natural lighting, color rendering, and carbon mitigation","authors":"Vishnu Priya A, Saboor Shaik","doi":"10.1016/j.solener.2024.113046","DOIUrl":null,"url":null,"abstract":"<div><div>Heat gain and loss from the building’s windows raise the loads needed for cooling and heating, respectively. This paper introduces an innovative approach to deliver an economical passive energy-efficient glazing solution, making use of various colored transparent slime materials for the first time. This work fills the gap in double-pane glazing with five different colored slime materials: blue (TBS), yellow (TYS), pink (TPS), green (TGS), and colorless slime (TCS), each maintained at different thicknesses (4 mm, 8 mm, and 12 mm). The eighteen samples are analyzed, considering reductions in heat gain, annual cooling expenses, payback duration, carbon emission reduction, Color Rendering Index (CRI), and Correlated Color Temperature (CCT) for Vellore climatic conditions in India. Thermal and daylighting simulations are conducted using Design-Builder simulation tool, incorporating slime glazings into an office complex model. Among the different coloured slime glazings, the transparent yellow slime glazings have shown better thermal performance. The transparent yellow slime glazings, TYS-4, 8, and 12, have the highest annual cooling load reductions of 641.61, 702.05, and 708.37 kWh, respectively, and the shortest payback durations of 2.94, 3.25, and 3.77 years, respectively. They also significantly reduce carbon emissions by 2.5, 2.8, and 2.83 tCO2/year, respectively, when compared to standard DPG-4, 8, and 12. Among TYS-4,8,12, TYS-4 stands out for glazing applications due to its commendable thermal performance and visual quality (CRI > 80). This work reports an innovative, cost-effective solution for energy-efficient glazing, demonstrating the potential benefits of colored slime materials in reducing energy consumption, and carbon emissions.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113046"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X24007412","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Heat gain and loss from the building’s windows raise the loads needed for cooling and heating, respectively. This paper introduces an innovative approach to deliver an economical passive energy-efficient glazing solution, making use of various colored transparent slime materials for the first time. This work fills the gap in double-pane glazing with five different colored slime materials: blue (TBS), yellow (TYS), pink (TPS), green (TGS), and colorless slime (TCS), each maintained at different thicknesses (4 mm, 8 mm, and 12 mm). The eighteen samples are analyzed, considering reductions in heat gain, annual cooling expenses, payback duration, carbon emission reduction, Color Rendering Index (CRI), and Correlated Color Temperature (CCT) for Vellore climatic conditions in India. Thermal and daylighting simulations are conducted using Design-Builder simulation tool, incorporating slime glazings into an office complex model. Among the different coloured slime glazings, the transparent yellow slime glazings have shown better thermal performance. The transparent yellow slime glazings, TYS-4, 8, and 12, have the highest annual cooling load reductions of 641.61, 702.05, and 708.37 kWh, respectively, and the shortest payback durations of 2.94, 3.25, and 3.77 years, respectively. They also significantly reduce carbon emissions by 2.5, 2.8, and 2.83 tCO2/year, respectively, when compared to standard DPG-4, 8, and 12. Among TYS-4,8,12, TYS-4 stands out for glazing applications due to its commendable thermal performance and visual quality (CRI > 80). This work reports an innovative, cost-effective solution for energy-efficient glazing, demonstrating the potential benefits of colored slime materials in reducing energy consumption, and carbon emissions.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass