Experimental and numerical study on establishment, fuel-N conversion, and heat transfer of swirl, non-premixed MILD, and premixed MILD combustion

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS
Fuel Pub Date : 2024-11-16 DOI:10.1016/j.fuel.2024.133719
Shunta Xu , Chengxin Dou , Liyang Xi , Songjie Tian , Weijie Li , Hao Liu
{"title":"Experimental and numerical study on establishment, fuel-N conversion, and heat transfer of swirl, non-premixed MILD, and premixed MILD combustion","authors":"Shunta Xu ,&nbsp;Chengxin Dou ,&nbsp;Liyang Xi ,&nbsp;Songjie Tian ,&nbsp;Weijie Li ,&nbsp;Hao Liu","doi":"10.1016/j.fuel.2024.133719","DOIUrl":null,"url":null,"abstract":"<div><div>Moderate or intense low-oxygen dilution (MILD) combustion has become much more attractive due to its advantage of low NO<sub>x</sub> emissions. This paper undertakes a combined experimental and numerical study to examine the behaviors of establishment, fuel-N conversion, and heat transfer of swirl, non-premixed MILD, and premixed MILD combustion with non-preheated air in a 20-kW laboratory-scale furnace. In particular, the threshold wall temperature for achieving non-preheated CH<sub>4</sub>/air MILD combustion in the non-premixed and premixed fuel/air jet modes is experimentally obtained. In swirl, non-premixed MILD, and premixed MILD combustion, fuel-NO emission is measured over a wide range of NH<sub>3</sub> mole fractions in the fuel (<span><math><msub><mi>X</mi><msub><mtext>NH</mtext><mtext>3</mtext></msub></msub></math></span>) from 0 to 3 % and fuel–air equivalence ratios (<em>φ</em>) from 0.8 to 1.2 when burning NH<sub>3</sub>-doped CH<sub>4</sub>; meanwhile, their difference in the fuel-N conversion mechanism is numerically revealed, especially from fuel-lean to fuel-rich conditions. The characteristics of energy balance and heat transfer in swirl, non-premixed MILD, and premixed MILD combustion are further comparatively analyzed. Results show that, the threshold wall temperature for forming non-preheated MILD combustion is reduced from ∼ 915 to ∼ 825 K when the non-premixed mode is changed to the premixed mode. Compared to swirl combustion, MILD combustion can reduce fuel-NO emissions by over 25 %. Interestingly, in MILD combustion, the non-premixed mode shows lower NO emissions under fuel-lean conditions due to less NO formation via <span><math><msub><mi>NH</mi><mn>3</mn></msub><mover><mo>→</mo><mrow><mo>+</mo><mi>OH</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>O</mi></mrow></mover><msub><mi>NH</mi><mn>2</mn></msub><mover><mo>→</mo><mrow><mo>+</mo><mi>O</mi></mrow></mover><mi>HNO</mi><mover><mo>→</mo><mrow><mo>+</mo><msub><mrow><mi>H</mi><mo>,</mo><mi>OH</mi><mo>,</mo><mi>O</mi><mo>,</mo><mi>O</mi></mrow><mn>2</mn></msub></mrow></mover><mi>NO</mi></math></span>, whereas NO emissions are lower in the premixed mode under reducing conditions as a result of less NO formation via HNO + H/OH → NO and more NO reduction via conversion of NO to NO<sub>2</sub>. Moreover, fuel-NO reduction, which proceeds mainly by reburning and selective non-catalytic reduction (SNCR) via <span><math><mi>NO</mi><mover><mo>→</mo><mrow><mo>+</mo><msub><mi>CH</mi><mrow><mi>i</mi><mo>=</mo><mn>0</mn><mo>-</mo><mn>3</mn></mrow></msub><mspace></mspace><mi>or</mi><mspace></mspace><mi>HCCO</mi></mrow></mover><mrow><mo>(</mo><mi>CN</mi><mo>/</mo><mi>HCNO</mi><mo>→</mo><mo>)</mo></mrow><mi>HCN</mi><mo>→</mo><mo>⋯</mo><mo>→</mo><msub><mi>N</mi><mn>2</mn></msub></math></span>, <span><math><mi>NO</mi><mover><mo>→</mo><mrow><mo>+</mo><msub><mi>NH</mi><mn>2</mn></msub><mo>,</mo><mspace></mspace><mi>NH</mi><mo>,</mo><mspace></mspace><mi>N</mi></mrow></mover><msub><mi>N</mi><mn>2</mn></msub></math></span>, and <span><math><mi>NO</mi><mover><mo>→</mo><mrow><mo>+</mo><mi>NH</mi></mrow></mover><msub><mrow><msub><mi>N</mi><mn>2</mn></msub><mi>O</mi><mover><mo>→</mo><mrow><mo>+</mo><mi>H</mi></mrow></mover><mi>N</mi></mrow><mn>2</mn></msub></math></span>, becomes more important in MILD combustion than in swirl combustion. Compared to swirl combustion, MILD combustion is characterized by lower heat flux transferred to the furnace walls (e.g., 47.3 %) and more exhaust energy loss through the chimney (e.g., 52.7 %) under non-preheated conditions.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"382 ","pages":"Article 133719"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236124028680","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Moderate or intense low-oxygen dilution (MILD) combustion has become much more attractive due to its advantage of low NOx emissions. This paper undertakes a combined experimental and numerical study to examine the behaviors of establishment, fuel-N conversion, and heat transfer of swirl, non-premixed MILD, and premixed MILD combustion with non-preheated air in a 20-kW laboratory-scale furnace. In particular, the threshold wall temperature for achieving non-preheated CH4/air MILD combustion in the non-premixed and premixed fuel/air jet modes is experimentally obtained. In swirl, non-premixed MILD, and premixed MILD combustion, fuel-NO emission is measured over a wide range of NH3 mole fractions in the fuel (XNH3) from 0 to 3 % and fuel–air equivalence ratios (φ) from 0.8 to 1.2 when burning NH3-doped CH4; meanwhile, their difference in the fuel-N conversion mechanism is numerically revealed, especially from fuel-lean to fuel-rich conditions. The characteristics of energy balance and heat transfer in swirl, non-premixed MILD, and premixed MILD combustion are further comparatively analyzed. Results show that, the threshold wall temperature for forming non-preheated MILD combustion is reduced from ∼ 915 to ∼ 825 K when the non-premixed mode is changed to the premixed mode. Compared to swirl combustion, MILD combustion can reduce fuel-NO emissions by over 25 %. Interestingly, in MILD combustion, the non-premixed mode shows lower NO emissions under fuel-lean conditions due to less NO formation via NH3+OH,H,ONH2+OHNO+H,OH,O,O2NO, whereas NO emissions are lower in the premixed mode under reducing conditions as a result of less NO formation via HNO + H/OH → NO and more NO reduction via conversion of NO to NO2. Moreover, fuel-NO reduction, which proceeds mainly by reburning and selective non-catalytic reduction (SNCR) via NO+CHi=0-3orHCCO(CN/HCNO)HCNN2, NO+NH2,NH,NN2, and NO+NHN2O+HN2, becomes more important in MILD combustion than in swirl combustion. Compared to swirl combustion, MILD combustion is characterized by lower heat flux transferred to the furnace walls (e.g., 47.3 %) and more exhaust energy loss through the chimney (e.g., 52.7 %) under non-preheated conditions.
关于漩涡燃烧、非预混合 MILD 燃烧和预混合 MILD 燃烧的建立、燃料-N 转化和传热的实验与数值研究
适度或强烈低氧稀释(MILD)燃烧因其氮氧化物排放量低的优势而变得越来越有吸引力。本文结合实验和数值研究,考察了在 20 千瓦实验室规模的熔炉中,漩涡燃烧、非预混合 MILD 燃烧以及与非预热空气预混合 MILD 燃烧的建立、燃料-N 转化和传热行为。特别是,通过实验获得了在非预混合和预混合燃料/空气喷射模式下实现非预热 CH4/ 空气 MILD 燃烧的临界壁温。在漩涡、非预混 MILD 和预混 MILD 燃烧中,当燃烧掺杂 NH3 的 CH4 时,在燃料中 NH3 摩尔分数 (XNH3) 从 0% 到 3% 和燃料-空气当量比 (φ) 从 0.8 到 1.2 的宽范围内测量了燃料-NO 排放量;同时,在数值上揭示了它们在燃料-N 转换机制上的差异,特别是从燃料贫乏到燃料丰富条件下的差异。进一步比较分析了漩涡燃烧、非预混 MILD 燃烧和预混 MILD 燃烧的能量平衡和传热特性。结果表明,当非预混合模式改为预混合模式时,形成非预混合 MILD 燃烧的阈值壁温从 ∼ 915 K 降至 ∼ 825 K。与漩涡燃烧相比,MILD 燃烧可减少 25% 以上的燃料-氮氧化物排放。有趣的是,在 MILD 燃烧中,由于通过 NH3→+OH,H,ONH2→+OH→+H,OH,O,O2NO 形成的 NO 较少,因此在燃料贫乏条件下,非预混模式的 NO 排放量较低,而在还原条件下,由于通过 HNO + H/OH → NO 形成的 NO 较少,以及通过将 NO 转化为 NO2 减少的 NO 较多,因此预混模式的 NO 排放量较低。此外,在 MILD 燃烧中,主要通过 NO→+CHi=0-3 或HCCO(CN/HCNO→)HCN→⋯→N2、NO→+NH2,NH,NN2 和 NO→+NHN2O→+HN2 进行再燃烧和选择性非催化还原(SNCR)的燃料-NO 还原比在漩涡燃烧中更为重要。与漩涡燃烧相比,在非预热条件下,MILD 燃烧的特点是转移到炉壁的热通量较低(例如 47.3%),通过烟囱排出的能量损失较多(例如 52.7%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信