Xuzhao Shi , Wei Song , Tao Wei , Kui Zhang , Zhigang Shao
{"title":"Improved CO tolerance of Pt nanoparticles on polyaniline-modified carbon for PEMFC anode","authors":"Xuzhao Shi , Wei Song , Tao Wei , Kui Zhang , Zhigang Shao","doi":"10.1016/j.fuel.2024.133239","DOIUrl":null,"url":null,"abstract":"<div><div>The anode Pt catalyst of a proton-exchange membrane fuel cell (PEMFC) is susceptible to poisoning by trace amounts of CO in hydrogen, which restricts its large-scale commercialisation. Therefore, developing PEMFC catalysts with CO tolerance is crucial as it would reduce the requirement for hydrogen purity. In this study, we present a CO-tolerant catalyst for the PEMFC anode synthesised by loading Pt onto a polyaniline-modified conductive carbon composite support (Pt/C-PANI). The results showed that the catalyst containing 5% PANI in the composite support (Pt/C-PANI-5) exhibited optimal hydrogen oxidation reaction activity and CO tolerance. Electrochemical tests showed that the current drop of Pt/C-PANI-5 was 6.8%, compared to 20% and 12% for Pt/C-sys and commercial PtRu/C catalysts, respectively. Furthermore, results of the single-cell test confirmed improved CO tolerance. These findings provide a potential solution for developing cost-effective fuel cell catalysts with improved CO tolerance.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"382 ","pages":"Article 133239"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236124023883","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The anode Pt catalyst of a proton-exchange membrane fuel cell (PEMFC) is susceptible to poisoning by trace amounts of CO in hydrogen, which restricts its large-scale commercialisation. Therefore, developing PEMFC catalysts with CO tolerance is crucial as it would reduce the requirement for hydrogen purity. In this study, we present a CO-tolerant catalyst for the PEMFC anode synthesised by loading Pt onto a polyaniline-modified conductive carbon composite support (Pt/C-PANI). The results showed that the catalyst containing 5% PANI in the composite support (Pt/C-PANI-5) exhibited optimal hydrogen oxidation reaction activity and CO tolerance. Electrochemical tests showed that the current drop of Pt/C-PANI-5 was 6.8%, compared to 20% and 12% for Pt/C-sys and commercial PtRu/C catalysts, respectively. Furthermore, results of the single-cell test confirmed improved CO tolerance. These findings provide a potential solution for developing cost-effective fuel cell catalysts with improved CO tolerance.
期刊介绍:
The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.