Interface engineering for improving photoelectrocatalytic performance of 2D/2D MXene@MoS2 for N2 reduction reaction: A theoretical insight

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS
Fuel Pub Date : 2024-11-16 DOI:10.1016/j.fuel.2024.133704
Fengjuan Guo , Junwei Ma , Xiaoyan Deng , Hongtao Gao
{"title":"Interface engineering for improving photoelectrocatalytic performance of 2D/2D MXene@MoS2 for N2 reduction reaction: A theoretical insight","authors":"Fengjuan Guo ,&nbsp;Junwei Ma ,&nbsp;Xiaoyan Deng ,&nbsp;Hongtao Gao","doi":"10.1016/j.fuel.2024.133704","DOIUrl":null,"url":null,"abstract":"<div><div>The photoelectrocatalytic nitrogen reduction reaction (NRR) often demonstrates significant catalytic performance due to the synergistic effect of photocatalysis and electrochemistry in synthesizing ammonia (NH<sub>3</sub>), providing a potential alternative to the traditional Haber-Bosch process. In this paper, we systematically investigated the NRR performance and mechanism of 25 different-ordered hydrophilic MXene composited hydrophobic 2H-MoS<sub>2</sub> monolayers constituting the 2D/2D heterojunctions as promising NRR photoelectrocatalysts by first-principles calculations based on density functional theory. The results identified that Cr<sub>3</sub>C<sub>2</sub>@MoS<sub>2</sub>, V<sub>2</sub>NbC<sub>2</sub>@MoS<sub>2</sub>, V<sub>2</sub>TaC<sub>2</sub>@MoS<sub>2</sub>, Cr<sub>2</sub>WC<sub>2</sub>@MoS<sub>2</sub>, Mo<sub>2</sub>NbC<sub>2</sub>@MoS<sub>2</sub>, and Mo<sub>2</sub>TaC<sub>2</sub>@MoS<sub>2</sub> are excellent catalysts with lower limiting potentials (−0.20 V, −0.29 V, −0.28 V, −0.23 V, −0.25 V, and −0.25 V, respectively), especially the Mo<sub>3</sub>C<sub>2</sub>@MoS<sub>2</sub> holds the remarkable catalytic activity with an ultra-low limiting potential of −0.13 V. This phenomenon may primarily be attributed to the efficient interface engineering and the photoelectric synergy effects. The hydrophilic MXene can directly donate H protons to the NRR, thereby shortening the transport pathway for H protons and accelerating the reaction kinetics. Under the action of the interfacial built-in electric field, photogenerated electrons are transferred from MoS<sub>2</sub> to MXene, offering an efficient electron transport route, and heightening electron transportability. Furthermore, we introduce the △G<sub>*NH2</sub> and △G<sub>*NNH</sub> as efficient descriptors to predict the NRR performance. Moreover, the DOS and charge density difference analysis reveal the electron “donation/back-donation” mechanism between N<sub>2</sub> molecules and transition atoms, which illustrates the activation effect of N<sub>2</sub> molecules. Furthermore, the work function plays a key role in tuning the energy barrier of the potential-determine step, thus affecting the catalytic properties of NRR. Finally, we verified the thermodynamic stability of heterojunctions using AIMD simulation. The modest initial potential, strong visible light absorbance, and exceptional stability endow the MXene@MoS<sub>2</sub> heterostructures with substantial promise as a photoelectrocatalyst for nitrogen fixation, thereby charting a viable course toward enhancing the sustainable synthesis of ammonia.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"382 ","pages":"Article 133704"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236124028539","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The photoelectrocatalytic nitrogen reduction reaction (NRR) often demonstrates significant catalytic performance due to the synergistic effect of photocatalysis and electrochemistry in synthesizing ammonia (NH3), providing a potential alternative to the traditional Haber-Bosch process. In this paper, we systematically investigated the NRR performance and mechanism of 25 different-ordered hydrophilic MXene composited hydrophobic 2H-MoS2 monolayers constituting the 2D/2D heterojunctions as promising NRR photoelectrocatalysts by first-principles calculations based on density functional theory. The results identified that Cr3C2@MoS2, V2NbC2@MoS2, V2TaC2@MoS2, Cr2WC2@MoS2, Mo2NbC2@MoS2, and Mo2TaC2@MoS2 are excellent catalysts with lower limiting potentials (−0.20 V, −0.29 V, −0.28 V, −0.23 V, −0.25 V, and −0.25 V, respectively), especially the Mo3C2@MoS2 holds the remarkable catalytic activity with an ultra-low limiting potential of −0.13 V. This phenomenon may primarily be attributed to the efficient interface engineering and the photoelectric synergy effects. The hydrophilic MXene can directly donate H protons to the NRR, thereby shortening the transport pathway for H protons and accelerating the reaction kinetics. Under the action of the interfacial built-in electric field, photogenerated electrons are transferred from MoS2 to MXene, offering an efficient electron transport route, and heightening electron transportability. Furthermore, we introduce the △G*NH2 and △G*NNH as efficient descriptors to predict the NRR performance. Moreover, the DOS and charge density difference analysis reveal the electron “donation/back-donation” mechanism between N2 molecules and transition atoms, which illustrates the activation effect of N2 molecules. Furthermore, the work function plays a key role in tuning the energy barrier of the potential-determine step, thus affecting the catalytic properties of NRR. Finally, we verified the thermodynamic stability of heterojunctions using AIMD simulation. The modest initial potential, strong visible light absorbance, and exceptional stability endow the MXene@MoS2 heterostructures with substantial promise as a photoelectrocatalyst for nitrogen fixation, thereby charting a viable course toward enhancing the sustainable synthesis of ammonia.
通过界面工程改善 2D/2D MXene@MoS2 在 N2 还原反应中的光电催化性能:理论见解
由于光催化和电化学在合成氨(NH3)过程中的协同作用,光电催化氮还原反应(NRR)通常表现出显著的催化性能,为传统的哈伯-博希工艺提供了一种潜在的替代方案。本文通过基于密度泛函理论的第一性原理计算,系统研究了 25 种不同排序的亲水性 MXene 复合疏水性 2H-MoS2 单层构成的 2D/2D 异质结作为有前景的 NRR 光电催化剂的 NRR 性能和机理。结果表明,Cr3C2@MoS2、V2NbC2@MoS2、V2TaC2@MoS2、Cr2WC2@MoS2、Mo2NbC2@MoS2 和 Mo2TaC2@MoS2 是具有较低极限电位(分别为 -0.20 V、-0.29 V、-0.28 V、-0.23 V、-0.25 V 和 -0.这一现象可能主要归功于高效的界面工程和光电协同效应。亲水性 MXene 可以直接向 NRR 捐献 H 质子,从而缩短 H 质子的传输路径并加速反应动力学。在界面内置电场的作用下,光生电子从 MoS2 转移到 MXene,提供了一条高效的电子传输途径,提高了电子的可传输性。此外,我们还引入了△G*NH2 和△G*NNH 作为预测 NRR 性能的有效描述因子。此外,DOS 和电荷密度差分析揭示了 N2 分子与过渡原子之间的电子 "捐赠/反捐赠 "机制,说明了 N2 分子的活化效应。此外,功函数在调整电位决定步骤的能障方面起着关键作用,从而影响了 NRR 的催化特性。最后,我们利用 AIMD 模拟验证了异质结的热力学稳定性。MXene@MoS2 异质结构具有适度的初始电位、较强的可见光吸收能力和优异的稳定性,有望成为一种用于固氮的光电催化剂,从而为提高氨的可持续合成指明了一条可行的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信