Huan Chen , Chaoen Li , Wenquan Zhou , Jili Wen , Mei Ma , Yuelin Chen , Kai Huang , Yang Ling , Jiang Wu , Yang Zhao , Xin Zeng , Yuxiang Wu
{"title":"Designing and optimizing the lead-free double perovskite Cs2AgBiI6/Cs2AgBiBr6 bilayer perovskite solar cell","authors":"Huan Chen , Chaoen Li , Wenquan Zhou , Jili Wen , Mei Ma , Yuelin Chen , Kai Huang , Yang Ling , Jiang Wu , Yang Zhao , Xin Zeng , Yuxiang Wu","doi":"10.1016/j.solener.2024.113087","DOIUrl":null,"url":null,"abstract":"<div><div>Due to their potential to be an absorber layer in perovskite solar cells with cheap cost, outstanding stability, and high efficiency, lead-free double perovskite Cs<sub>2</sub>AgBiI<sub>6</sub> and Cs<sub>2</sub>AgBiBr<sub>6</sub> have attracted tremendous attention recently. In this work, Cs<sub>2</sub>AgBiI<sub>6</sub> and Cs<sub>2</sub>AgBiBr<sub>6</sub> are introduced to create a perovskite-perovskite bilayer solar cell FTO/ETL/Cs<sub>2</sub>AgBiI<sub>6</sub>/Cs<sub>2</sub>AgBiBr<sub>6</sub>/HTL/Au through SCAPS-1D. The Cs<sub>2</sub>AgBiI<sub>6</sub>/Cs<sub>2</sub>AgBiBr<sub>6</sub> double absorber layer structure significantly reduces lead toxicity while improving the device’s stability and light absorption capabilities, according to the results. We chose the optimal hole transport layer (HTL) and electron transport layer (ETL) to examine the impacts of several HTLs and ETLs on the PSC. The device’s performance appears to be significantly impacted by the energy level alignment of the absorber and transport layers, and that ideal energy band structure facilitates the carriers’ transportation and separation. Through numerical simulations, the impacts of some factors containing the absorber layer thickness, defect density and doping concentration of the perovskite layers, operating temperature, and different back-contact electrodes, were examined. The optimized results are PCE = 34.36 %, FF = 93.35 %, J<sub>sc</sub> = 24.78 mA/cm<sup>2</sup>, and V<sub>oc</sub> = 1.48 V. This work demonstrates that double perovskite Cs<sub>2</sub>AgBiI<sub>6</sub> and Cs<sub>2</sub>AgBiBr<sub>6</sub> hold great potential for application in photovoltaic and optoelectronic devices.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113087"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X24007825","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Due to their potential to be an absorber layer in perovskite solar cells with cheap cost, outstanding stability, and high efficiency, lead-free double perovskite Cs2AgBiI6 and Cs2AgBiBr6 have attracted tremendous attention recently. In this work, Cs2AgBiI6 and Cs2AgBiBr6 are introduced to create a perovskite-perovskite bilayer solar cell FTO/ETL/Cs2AgBiI6/Cs2AgBiBr6/HTL/Au through SCAPS-1D. The Cs2AgBiI6/Cs2AgBiBr6 double absorber layer structure significantly reduces lead toxicity while improving the device’s stability and light absorption capabilities, according to the results. We chose the optimal hole transport layer (HTL) and electron transport layer (ETL) to examine the impacts of several HTLs and ETLs on the PSC. The device’s performance appears to be significantly impacted by the energy level alignment of the absorber and transport layers, and that ideal energy band structure facilitates the carriers’ transportation and separation. Through numerical simulations, the impacts of some factors containing the absorber layer thickness, defect density and doping concentration of the perovskite layers, operating temperature, and different back-contact electrodes, were examined. The optimized results are PCE = 34.36 %, FF = 93.35 %, Jsc = 24.78 mA/cm2, and Voc = 1.48 V. This work demonstrates that double perovskite Cs2AgBiI6 and Cs2AgBiBr6 hold great potential for application in photovoltaic and optoelectronic devices.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass