Effects of combining ultrasound and dual enzymolysis with hydroxypropylation, acrylate grafting, or phosphate grafting on the physicochemical and functional properties of oil palm mesocarp expeller dietary fiber
Xinyu Huo , Chen Feng , Yajun Zheng, Yan Li, Peiyao Long, Ziqing Jin, Yuwen Shao, Zimo Ye
{"title":"Effects of combining ultrasound and dual enzymolysis with hydroxypropylation, acrylate grafting, or phosphate grafting on the physicochemical and functional properties of oil palm mesocarp expeller dietary fiber","authors":"Xinyu Huo , Chen Feng , Yajun Zheng, Yan Li, Peiyao Long, Ziqing Jin, Yuwen Shao, Zimo Ye","doi":"10.1016/j.lwt.2024.117012","DOIUrl":null,"url":null,"abstract":"<div><div>Oil palm mesocarp expeller is an abundant and low-cost dietary fiber resource, but its poor hydration and adsorption properties limit its utilization in foods. Therefore, ultrasound and enzymolysis combined with hydroxypropylation, acrylate grafting, or phosphate grafting were used to improve the adsorption properties of oil palm mesocarp expeller fiber (OPMEDF) for the first time. The results revealed that these composite modifications made the microstructure of OPMEDF more porous, and significantly increased its soluble fiber content, surface area, hydration properties, and sorption abilities of glucose, nitrite, copper, and lead ions but decreased its brightness. OPMEDF modified by ultrasound, enzymolysis, and acrylate grafting had the highest content of extractable polyphenol and sorption abilities on oil and nitrite ion. OPMEDF subjected to ultrasound, enzymolysis, and phosphate grafting showed the highest water-swelling volume (3.84 mL g<sup>−1</sup>) and sorption abilities of copper (II) and lead (II) ions. Notably, OPMEDF modified by ultrasound, enzymolysis, and hydroxypropylation exhibited the highest soluble fiber content (14.72 g∙100 g<sup>−1</sup>), water-retention ability (5.22 g g<sup>−1</sup>), viscosity (13.90 cp), and glucose adsorption capacity (38.18 g∙100 g<sup>−1</sup>). These results indicated that these composite modifications are good options to improve the adsorption capacities of OPMEDF and can expand its potential hypoglycemic and hypolipidemic effects.</div></div>","PeriodicalId":382,"journal":{"name":"LWT - Food Science and Technology","volume":"212 ","pages":"Article 117012"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"LWT - Food Science and Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0023643824012957","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oil palm mesocarp expeller is an abundant and low-cost dietary fiber resource, but its poor hydration and adsorption properties limit its utilization in foods. Therefore, ultrasound and enzymolysis combined with hydroxypropylation, acrylate grafting, or phosphate grafting were used to improve the adsorption properties of oil palm mesocarp expeller fiber (OPMEDF) for the first time. The results revealed that these composite modifications made the microstructure of OPMEDF more porous, and significantly increased its soluble fiber content, surface area, hydration properties, and sorption abilities of glucose, nitrite, copper, and lead ions but decreased its brightness. OPMEDF modified by ultrasound, enzymolysis, and acrylate grafting had the highest content of extractable polyphenol and sorption abilities on oil and nitrite ion. OPMEDF subjected to ultrasound, enzymolysis, and phosphate grafting showed the highest water-swelling volume (3.84 mL g−1) and sorption abilities of copper (II) and lead (II) ions. Notably, OPMEDF modified by ultrasound, enzymolysis, and hydroxypropylation exhibited the highest soluble fiber content (14.72 g∙100 g−1), water-retention ability (5.22 g g−1), viscosity (13.90 cp), and glucose adsorption capacity (38.18 g∙100 g−1). These results indicated that these composite modifications are good options to improve the adsorption capacities of OPMEDF and can expand its potential hypoglycemic and hypolipidemic effects.
期刊介绍:
LWT - Food Science and Technology is an international journal that publishes innovative papers in the fields of food chemistry, biochemistry, microbiology, technology and nutrition. The work described should be innovative either in the approach or in the methods used. The significance of the results either for the science community or for the food industry must also be specified. Contributions written in English are welcomed in the form of review articles, short reviews, research papers, and research notes. Papers featuring animal trials and cell cultures are outside the scope of the journal and will not be considered for publication.