High-Q terahertz chirality enhancement using elliptical hole metasurface

IF 2.2 3区 物理与天体物理 Q2 OPTICS
Hongyan Yang , Hongrui Sun , Yuhang Yang , Quanlin He , Jianqing Li , Gongli Xiao
{"title":"High-Q terahertz chirality enhancement using elliptical hole metasurface","authors":"Hongyan Yang ,&nbsp;Hongrui Sun ,&nbsp;Yuhang Yang ,&nbsp;Quanlin He ,&nbsp;Jianqing Li ,&nbsp;Gongli Xiao","doi":"10.1016/j.optcom.2024.131268","DOIUrl":null,"url":null,"abstract":"<div><div>Circular dichroism (CD) technology has garnered significant attention due to its extensive applications in ultra-sensitive biosensing and spin-selective optical frequency conversion. However, existing terahertz chiral structures are constrained by linewidth, which limits their effectiveness in narrowband signal processing. In this study, we propose the notion of quasi-bound states in the continuum (quasi-BIC) within a planar elliptical hole all-silicon terahertz metasurface that exhibits broken mirror symmetry. This approach achieves a CD value as high as 0.97, with a linewidth below 0.5 GHz and a Quality (<em>Q</em>)-factor reaching up to 10<sup>7</sup> in the 1.3 THz to 1.55 THz band, thereby enabling ultra-narrowband terahertz chirality. This method significantly enhances the <em>Q</em>-factor of optical resonant systems, reduces linewidth, and achieves strong CD while addressing the trade-off between high <em>Q</em>-factor and high CD observed in existing structures. The theoretical foundations for achieving ultra-narrow linewidth are established through band structure calculations and far-field polarization analysis. Additionally, the <em>Q</em>-factor of quasi-BIC can be flexibly optimized through parameter tuning, rendering it more practical than perfect BIC in real-world applications. This study presents a novel solution for terahertz narrowband chirality and optical filters, potentially advancing technologies in related fields.</div><div>© 2024 Optica Publishing Group under the terms of the Optica Publishing Group Open Access Publishing Agreement.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"575 ","pages":"Article 131268"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401824010058","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Circular dichroism (CD) technology has garnered significant attention due to its extensive applications in ultra-sensitive biosensing and spin-selective optical frequency conversion. However, existing terahertz chiral structures are constrained by linewidth, which limits their effectiveness in narrowband signal processing. In this study, we propose the notion of quasi-bound states in the continuum (quasi-BIC) within a planar elliptical hole all-silicon terahertz metasurface that exhibits broken mirror symmetry. This approach achieves a CD value as high as 0.97, with a linewidth below 0.5 GHz and a Quality (Q)-factor reaching up to 107 in the 1.3 THz to 1.55 THz band, thereby enabling ultra-narrowband terahertz chirality. This method significantly enhances the Q-factor of optical resonant systems, reduces linewidth, and achieves strong CD while addressing the trade-off between high Q-factor and high CD observed in existing structures. The theoretical foundations for achieving ultra-narrow linewidth are established through band structure calculations and far-field polarization analysis. Additionally, the Q-factor of quasi-BIC can be flexibly optimized through parameter tuning, rendering it more practical than perfect BIC in real-world applications. This study presents a novel solution for terahertz narrowband chirality and optical filters, potentially advancing technologies in related fields.
© 2024 Optica Publishing Group under the terms of the Optica Publishing Group Open Access Publishing Agreement.
利用椭圆孔元表面增强高 Q 太赫兹手性
圆二色性(CD)技术在超灵敏生物传感和自旋选择性光频转换方面应用广泛,因而备受关注。然而,现有的太赫兹手性结构受到线宽的限制,从而限制了其在窄带信号处理中的有效性。在本研究中,我们提出了在平面椭圆孔全硅太赫兹元表面内的连续体中准束缚态(quasi-BIC)的概念,该平面椭圆孔全硅太赫兹元表面表现出破碎的镜像对称性。这种方法实现了高达 0.97 的 CD 值,线宽低于 0.5 GHz,在 1.3 THz 至 1.55 THz 波段的质量(Q)因子高达 107,从而实现了超窄带太赫兹手性。这种方法大大提高了光学谐振系统的 Q 因子,降低了线宽,并实现了强 CD,同时解决了现有结构中存在的高 Q 因子和高 CD 之间的权衡问题。通过带状结构计算和远场偏振分析,建立了实现超窄线宽的理论基础。此外,准 BIC 的 Q 因子可通过参数调整灵活优化,在实际应用中比完美 BIC 更为实用。这项研究为太赫兹窄带手性和光学滤波器提出了一种新的解决方案,有望推动相关领域技术的发展。© 2024 Optica Publishing Group,根据 Optica Publishing Group Open Access Publishing Agreement 的条款。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics Communications
Optics Communications 物理-光学
CiteScore
5.10
自引率
8.30%
发文量
681
审稿时长
38 days
期刊介绍: Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信