Multi-physics device simulations of optimized semi-transparent perovskite solar cells: Influence of material types and layer thicknesses on transmittance and electrical performance

IF 6 2区 工程技术 Q2 ENERGY & FUELS
Hadush Yohanes Tesfancheal , Zishuo Wang , Jieqiong Chen , Mingchao Wang , Zhuoxin Li , Jiahong Pan , Xing Li , Molang Cai
{"title":"Multi-physics device simulations of optimized semi-transparent perovskite solar cells: Influence of material types and layer thicknesses on transmittance and electrical performance","authors":"Hadush Yohanes Tesfancheal ,&nbsp;Zishuo Wang ,&nbsp;Jieqiong Chen ,&nbsp;Mingchao Wang ,&nbsp;Zhuoxin Li ,&nbsp;Jiahong Pan ,&nbsp;Xing Li ,&nbsp;Molang Cai","doi":"10.1016/j.solener.2024.113069","DOIUrl":null,"url":null,"abstract":"<div><div>The utilization of perovskite and electrode materials enables the production of semitransparent solar cells that allow partial transmission of light, making them suitable for integration into windows and other transparent surfaces. However, achieving optimal performance is challenging due to the trade-off between transparency and power conversion efficiency (PCE). This study emphasizes the crucial role played by material selection, active layer thickness, and transparent electrode configuration in determining this trade-off in semitransparent perovskite solar cells (ST-PSCs). Through multi-physics device simulations, we optimize the thickness and compare the performance of two active layer materials − MAPbI<sub>3</sub> and CsPbI<sub>3</sub> − resulting in increased average visible transmission (AVT) as well as PCE. Notably, MAPbI<sub>3</sub> outperforms CsPbI<sub>3</sub> as an absorber material in ST-PSCs. CsPbI<sub>3</sub> achieves an optimal light utilization efficiency (LUE) of 4.06 % at a thickness of 300 nm, while MAPbI<sub>3</sub> reaches 4.15 % at a thickness of 100 nm, which shows better performance. Furthermore, our findings demonstrate that the MoO<sub>3</sub>/Ag/WO<sub>3</sub> configuration enhances both PCE and AVT compared to alternative configurations due to MoO<sub>3</sub>′s mitigated parasitic behavior. These results provide valuable insights for advancing solar cell technologies applicable to practical uses such as window integration or other transparent surfaces.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113069"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X24007643","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The utilization of perovskite and electrode materials enables the production of semitransparent solar cells that allow partial transmission of light, making them suitable for integration into windows and other transparent surfaces. However, achieving optimal performance is challenging due to the trade-off between transparency and power conversion efficiency (PCE). This study emphasizes the crucial role played by material selection, active layer thickness, and transparent electrode configuration in determining this trade-off in semitransparent perovskite solar cells (ST-PSCs). Through multi-physics device simulations, we optimize the thickness and compare the performance of two active layer materials − MAPbI3 and CsPbI3 − resulting in increased average visible transmission (AVT) as well as PCE. Notably, MAPbI3 outperforms CsPbI3 as an absorber material in ST-PSCs. CsPbI3 achieves an optimal light utilization efficiency (LUE) of 4.06 % at a thickness of 300 nm, while MAPbI3 reaches 4.15 % at a thickness of 100 nm, which shows better performance. Furthermore, our findings demonstrate that the MoO3/Ag/WO3 configuration enhances both PCE and AVT compared to alternative configurations due to MoO3′s mitigated parasitic behavior. These results provide valuable insights for advancing solar cell technologies applicable to practical uses such as window integration or other transparent surfaces.

Abstract Image

优化半透明过氧化物太阳能电池的多物理场器件模拟:材料类型和层厚度对透射率和电气性能的影响
利用过氧化物和电极材料可以生产出允许部分透光的半透明太阳能电池,使其适合集成到窗户和其他透明表面中。然而,由于透明度和功率转换效率(PCE)之间的权衡,实现最佳性能具有挑战性。本研究强调了材料选择、活性层厚度和透明电极配置在决定半透明过氧化物太阳能电池(ST-PSCs)性能权衡中的关键作用。通过多物理场器件模拟,我们优化了 MAPbI3 和 CsPbI3 两种活性层材料的厚度,并比较了它们的性能,从而提高了平均可见光透射率(AVT)和 PCE。作为 ST-PSC 的吸收材料,MAPbI3 的性能明显优于 CsPbI3。CsPbI3 在厚度为 300 纳米时的最佳光利用效率(LUE)为 4.06%,而 MAPbI3 在厚度为 100 纳米时的最佳光利用效率(LUE)为 4.15%,表现出更好的性能。此外,我们的研究结果表明,与其他配置相比,MoO3/Ag/WO3 配置可提高 PCE 和 AVT,这是因为 MoO3 可减轻寄生行为。这些结果为太阳能电池技术的发展提供了宝贵的启示,这些技术适用于窗户集成或其他透明表面等实际用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信