Enhancing photocatalytic H2 evolution of Cd0.5Zn0.5S with the synergism of amorphous CoS cocatalysts and surface S2− adsorption

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS
Fuel Pub Date : 2024-11-17 DOI:10.1016/j.fuel.2024.133737
Longxin Hu , Xing Liu , Rui Dai , Hua Lai , Junhua Li
{"title":"Enhancing photocatalytic H2 evolution of Cd0.5Zn0.5S with the synergism of amorphous CoS cocatalysts and surface S2− adsorption","authors":"Longxin Hu ,&nbsp;Xing Liu ,&nbsp;Rui Dai ,&nbsp;Hua Lai ,&nbsp;Junhua Li","doi":"10.1016/j.fuel.2024.133737","DOIUrl":null,"url":null,"abstract":"<div><div>Designing surface phase is an efficient strategy to facilitate charge separation and photocatalytic H<sub>2</sub>-evolution performance. In this work, CoS cocatalysts were intimately anchored on Cd<sub>0.5</sub>Zn<sub>0.5</sub>S (denoted as CZS) photocatalyst via in-situ precipitate transformation in S<sup>2−</sup>/SO<sub>3</sub><sup>2−</sup> solution with cobaltous phosphate (CoPi) as a precursor, meanwhile, S<sup>2−</sup> ions were adsorbed on the CZS to form a sulfur-rich surface (denoted as CZS-S). The photocatalytic H<sub>2</sub>-evolution rate of CoS/CZS-S is 2.02 mmol·g<sup>−1</sup>·h<sup>−1</sup> in 0.1 M Na<sub>2</sub>S/Na<sub>2</sub>SO<sub>3</sub> sacrificial agent system. In addition, CoS/CZS-S exhibits excellent stability in both Na<sub>2</sub>S/Na<sub>2</sub>SO<sub>3</sub> and lactic acid system. The theoretical calculations (DFT) and experimental results reveal that amorphous CoS can work as a highly effective cocatalyst for H<sub>2</sub> evolution reaction and the intimate contact between CZS and CoS facilitates the photoelectrons transfer from CZS to CoS. The adsorbed S<sup>2−</sup> ions mainly work as effective hole acceptors. As a result of the synergism of CoS and adsorbed S<sup>2−</sup> ions, the boosted separation and immigration of photoelectrons and photoholes and high photocatalytic H<sub>2</sub>-evolution performance of CoS/CZS-S are realized. The present work highlights simultaneous reinforcing reduction and oxidation half-reaction dynamics via a facile and economic surface strategy to achieve efficient solar H<sub>2</sub>-evolution from H<sub>2</sub>O splitting.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"382 ","pages":"Article 133737"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236124028862","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Designing surface phase is an efficient strategy to facilitate charge separation and photocatalytic H2-evolution performance. In this work, CoS cocatalysts were intimately anchored on Cd0.5Zn0.5S (denoted as CZS) photocatalyst via in-situ precipitate transformation in S2−/SO32− solution with cobaltous phosphate (CoPi) as a precursor, meanwhile, S2− ions were adsorbed on the CZS to form a sulfur-rich surface (denoted as CZS-S). The photocatalytic H2-evolution rate of CoS/CZS-S is 2.02 mmol·g−1·h−1 in 0.1 M Na2S/Na2SO3 sacrificial agent system. In addition, CoS/CZS-S exhibits excellent stability in both Na2S/Na2SO3 and lactic acid system. The theoretical calculations (DFT) and experimental results reveal that amorphous CoS can work as a highly effective cocatalyst for H2 evolution reaction and the intimate contact between CZS and CoS facilitates the photoelectrons transfer from CZS to CoS. The adsorbed S2− ions mainly work as effective hole acceptors. As a result of the synergism of CoS and adsorbed S2− ions, the boosted separation and immigration of photoelectrons and photoholes and high photocatalytic H2-evolution performance of CoS/CZS-S are realized. The present work highlights simultaneous reinforcing reduction and oxidation half-reaction dynamics via a facile and economic surface strategy to achieve efficient solar H2-evolution from H2O splitting.

Abstract Image

非晶 CoS 协同催化剂与表面 S2- 吸附的协同作用增强了 Cd0.5Zn0.5S 的光催化 H2 演化能力
设计表面相是促进电荷分离和光催化 H2 溶解性能的有效策略。本研究以磷酸钴(CoPi)为前驱体,在S2-/SO32-溶液中通过原位沉淀转化将CoS茧催化剂紧密锚定在Cd0.5Zn0.5S(简称CZS)光催化剂上,同时在CZS上吸附S2-离子形成富硫表面(简称CZS-S)。在 0.1 M Na2S/Na2SO3 牺牲剂体系中,CoS/CZS-S 的光催化 H2 生成率为 2.02 mmol-g-1-h-1。此外,CoS/CZS-S 在 Na2S/Na2SO3 和乳酸体系中均表现出优异的稳定性。理论计算(DFT)和实验结果表明,无定形 CoS 可作为一种高效的茧催化剂用于 H2 演化反应,CZS 和 CoS 之间的亲密接触有利于光电子从 CZS 转移到 CoS。吸附的 S2- 离子主要作为有效的空穴受体发挥作用。由于 CoS 和吸附的 S2- 离子的协同作用,CoS/CZS-S 实现了光电子和光电子孔的分离和迁移,具有很高的光催化 H2 变化性能。本研究通过一种简便、经济的表面策略,强调了同时强化还原和氧化半反应动力学,以实现高效的太阳能 H2O 裂解产生的 H2 蒸发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信