Longxin Hu , Xing Liu , Rui Dai , Hua Lai , Junhua Li
{"title":"Enhancing photocatalytic H2 evolution of Cd0.5Zn0.5S with the synergism of amorphous CoS cocatalysts and surface S2− adsorption","authors":"Longxin Hu , Xing Liu , Rui Dai , Hua Lai , Junhua Li","doi":"10.1016/j.fuel.2024.133737","DOIUrl":null,"url":null,"abstract":"<div><div>Designing surface phase is an efficient strategy to facilitate charge separation and photocatalytic H<sub>2</sub>-evolution performance. In this work, CoS cocatalysts were intimately anchored on Cd<sub>0.5</sub>Zn<sub>0.5</sub>S (denoted as CZS) photocatalyst via in-situ precipitate transformation in S<sup>2−</sup>/SO<sub>3</sub><sup>2−</sup> solution with cobaltous phosphate (CoPi) as a precursor, meanwhile, S<sup>2−</sup> ions were adsorbed on the CZS to form a sulfur-rich surface (denoted as CZS-S). The photocatalytic H<sub>2</sub>-evolution rate of CoS/CZS-S is 2.02 mmol·g<sup>−1</sup>·h<sup>−1</sup> in 0.1 M Na<sub>2</sub>S/Na<sub>2</sub>SO<sub>3</sub> sacrificial agent system. In addition, CoS/CZS-S exhibits excellent stability in both Na<sub>2</sub>S/Na<sub>2</sub>SO<sub>3</sub> and lactic acid system. The theoretical calculations (DFT) and experimental results reveal that amorphous CoS can work as a highly effective cocatalyst for H<sub>2</sub> evolution reaction and the intimate contact between CZS and CoS facilitates the photoelectrons transfer from CZS to CoS. The adsorbed S<sup>2−</sup> ions mainly work as effective hole acceptors. As a result of the synergism of CoS and adsorbed S<sup>2−</sup> ions, the boosted separation and immigration of photoelectrons and photoholes and high photocatalytic H<sub>2</sub>-evolution performance of CoS/CZS-S are realized. The present work highlights simultaneous reinforcing reduction and oxidation half-reaction dynamics via a facile and economic surface strategy to achieve efficient solar H<sub>2</sub>-evolution from H<sub>2</sub>O splitting.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"382 ","pages":"Article 133737"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236124028862","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Designing surface phase is an efficient strategy to facilitate charge separation and photocatalytic H2-evolution performance. In this work, CoS cocatalysts were intimately anchored on Cd0.5Zn0.5S (denoted as CZS) photocatalyst via in-situ precipitate transformation in S2−/SO32− solution with cobaltous phosphate (CoPi) as a precursor, meanwhile, S2− ions were adsorbed on the CZS to form a sulfur-rich surface (denoted as CZS-S). The photocatalytic H2-evolution rate of CoS/CZS-S is 2.02 mmol·g−1·h−1 in 0.1 M Na2S/Na2SO3 sacrificial agent system. In addition, CoS/CZS-S exhibits excellent stability in both Na2S/Na2SO3 and lactic acid system. The theoretical calculations (DFT) and experimental results reveal that amorphous CoS can work as a highly effective cocatalyst for H2 evolution reaction and the intimate contact between CZS and CoS facilitates the photoelectrons transfer from CZS to CoS. The adsorbed S2− ions mainly work as effective hole acceptors. As a result of the synergism of CoS and adsorbed S2− ions, the boosted separation and immigration of photoelectrons and photoholes and high photocatalytic H2-evolution performance of CoS/CZS-S are realized. The present work highlights simultaneous reinforcing reduction and oxidation half-reaction dynamics via a facile and economic surface strategy to achieve efficient solar H2-evolution from H2O splitting.
期刊介绍:
The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.