{"title":"Broadband and wide-angle antireflection in silicon solar cells using atomically thin MoS2 with a gradient unit cell structure","authors":"Yuncai Feng, Zhengyang Huang, Xiaomin Zhang, Tianhui Qiu","doi":"10.1016/j.solener.2024.113088","DOIUrl":null,"url":null,"abstract":"<div><div>Nanostructures have been extensively utilized to enhance light trapping and minimize reflection losses in silicon solar cells, leading to significant improvements in photovoltaic performance. Understanding how these structures influence broadband and omnidirectional antireflection (AR) is crucial for advancing solar technologies. In this study, we present an innovative AR design that integrates atomically thin MoS<sub>2</sub> with a gradient unit cell structure. Using finite-difference time-domain (FDTD) simulations, we demonstrate the exceptional broadband and wide-angle AR performance of this configuration. The gradient unit cell design enables effective light management across a wide range of incident angles and wavelengths. This approach offers a simpler alternative to conventional graded refractive index structures, reducing the complexity of fabrication while maintaining high efficiency. Our findings highlight the potential of this structure to revolutionize solar cell performance, paving the way for next-generation photovoltaic technologies.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113088"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X24007837","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Nanostructures have been extensively utilized to enhance light trapping and minimize reflection losses in silicon solar cells, leading to significant improvements in photovoltaic performance. Understanding how these structures influence broadband and omnidirectional antireflection (AR) is crucial for advancing solar technologies. In this study, we present an innovative AR design that integrates atomically thin MoS2 with a gradient unit cell structure. Using finite-difference time-domain (FDTD) simulations, we demonstrate the exceptional broadband and wide-angle AR performance of this configuration. The gradient unit cell design enables effective light management across a wide range of incident angles and wavelengths. This approach offers a simpler alternative to conventional graded refractive index structures, reducing the complexity of fabrication while maintaining high efficiency. Our findings highlight the potential of this structure to revolutionize solar cell performance, paving the way for next-generation photovoltaic technologies.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass