Bayesian estimation strategy for multi-component geometric life testing model under doubly type-1 censoring scheme

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Nadeem Akhtar , Muteb Faraj Alharthi , Sajjad Ahmad Khan , Akbar Ali Khan , Muhammad Amin
{"title":"Bayesian estimation strategy for multi-component geometric life testing model under doubly type-1 censoring scheme","authors":"Nadeem Akhtar ,&nbsp;Muteb Faraj Alharthi ,&nbsp;Sajjad Ahmad Khan ,&nbsp;Akbar Ali Khan ,&nbsp;Muhammad Amin","doi":"10.1016/j.kjs.2024.100339","DOIUrl":null,"url":null,"abstract":"<div><div>This study develops a Bayesian approach for estimating the unknown parameters of the 3-component mixture of geometric (3-CMG) model under a doubly type-I censoring scheme <strong>(</strong>DT1CS<strong>)</strong>. The derivations of the Bayes estimators (BEs) and Bayes risks (BRs) are presented under square error loss function (SELF), precautionary loss function (PLF) and DeGroot loss function (DLF) using Beta prior under DT1CS. The strategy is evaluated through extensive simulation and real-life data analysis, showing the strength and efficiency of the newly proposed model. The study recommends that the SELF is the optimal choice for accurately estimating the unknown parameters of the 3-CMG model.</div></div>","PeriodicalId":17848,"journal":{"name":"Kuwait Journal of Science","volume":"52 1","pages":"Article 100339"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kuwait Journal of Science","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2307410824001640","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study develops a Bayesian approach for estimating the unknown parameters of the 3-component mixture of geometric (3-CMG) model under a doubly type-I censoring scheme (DT1CS). The derivations of the Bayes estimators (BEs) and Bayes risks (BRs) are presented under square error loss function (SELF), precautionary loss function (PLF) and DeGroot loss function (DLF) using Beta prior under DT1CS. The strategy is evaluated through extensive simulation and real-life data analysis, showing the strength and efficiency of the newly proposed model. The study recommends that the SELF is the optimal choice for accurately estimating the unknown parameters of the 3-CMG model.
双 1 型普查方案下多成分几何寿命测试模型的贝叶斯估计策略
本研究开发了一种贝叶斯方法,用于估计双 I 型普查方案(DT1CS)下三分量混合几何模型(3-CMG)的未知参数。在 DT1CS 下使用 Beta 先验的平方误差损失函数(SELF)、预防性损失函数(PLF)和 DeGroot 损失函数(DLF)下,介绍了贝叶斯估计器(BEs)和贝叶斯风险(BRs)的推导。通过大量的模拟和实际数据分析,对该策略进行了评估,显示了新提出模型的优势和效率。研究建议 SELF 是准确估计 3-CMG 模型未知参数的最佳选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Kuwait Journal of Science
Kuwait Journal of Science MULTIDISCIPLINARY SCIENCES-
CiteScore
1.60
自引率
28.60%
发文量
132
期刊介绍: Kuwait Journal of Science (KJS) is indexed and abstracted by major publishing houses such as Chemical Abstract, Science Citation Index, Current contents, Mathematics Abstract, Micribiological Abstracts etc. KJS publishes peer-review articles in various fields of Science including Mathematics, Computer Science, Physics, Statistics, Biology, Chemistry and Earth & Environmental Sciences. In addition, it also aims to bring the results of scientific research carried out under a variety of intellectual traditions and organizations to the attention of specialized scholarly readership. As such, the publisher expects the submission of original manuscripts which contain analysis and solutions about important theoretical, empirical and normative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信