Inoculation with multifunctional Bacillus sp. NEAU-DCB1-2 mitigates chromium toxicity in pakchoi (Brassica rapa ssp. chinensis) through a multi-level mechanism
Lifeng Guo , Dandan Du , Tingting Li , Ling Ling , Wenshuai Song , Xiaoyan Yu , Junlei Zhao , Wensheng Xiang , Junwei Zhao
{"title":"Inoculation with multifunctional Bacillus sp. NEAU-DCB1-2 mitigates chromium toxicity in pakchoi (Brassica rapa ssp. chinensis) through a multi-level mechanism","authors":"Lifeng Guo , Dandan Du , Tingting Li , Ling Ling , Wenshuai Song , Xiaoyan Yu , Junlei Zhao , Wensheng Xiang , Junwei Zhao","doi":"10.1016/j.envexpbot.2024.106026","DOIUrl":null,"url":null,"abstract":"<div><div>Soil chromium (Cr) accumulation is escalating, severely hindering plant growth and development. Plant growth-promoting bacteria (PGPB) have shown potential in enhancing plant tolerance to heavy metals. However, the role and mechanisms of Cr(VI)-reducing PGPB strains in improving the growth of pakchoi under Cr toxicity remain unclear. This study aimed to isolate a Cr(VI)-reducing PGPB strain from Cr-contaminated soil, evaluate its effect on pakchoi growth under Cr(VI) stress, and investigate the mechanisms involved. Our findings showed that <em>Bacillus</em> sp. NEAU-DCB1–2 effectively reduce Cr(VI) to Cr(III) and produced indole-3-acetic acid and siderophores. Under Cr(VI) stress, inoculation with NEAU-DC1–2 significantly promoted seed germination and early growth of pakchoi. In pot experiments, NEAU-DCB1–2 significantly increased biomass accumulation, plant height, and root length of Cr(VI)-treated pakchoi seedlings, while reducing the Cr(VI) content in root, shoot and soil. Moreover, NEAU-DCB1–2 greatly increased catalase, superoxide dismutase, peroxidase, and ascorbate peroxidase activities in seedlings under Cr(VI) stress, thereby reducing malondialdehyde content. Transcriptome analysis indicated substantial alterations in gene expression patterns after inoculation with NEAU-DCB1–2 under Cr(VI) stress. Further analyses revealed that NEAU-DCB1–2 mainly affected the responses of antioxidant system, metal chelation and transport, together with auxin, abscisic acid, and jasmonic acid signaling to Cr(VI) stress. Conclusively, the Cr(VI)-reducing PGPB strain NEAU-DCB1–2 significantly enhances the growth and Cr tolerance of pakchoi through multiple mechanisms, offering a valuable microbial resource for mitigating the adverse effects of heavy metal contamination in agricultural soils on the yield and safety of vegetable crops.</div></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":"228 ","pages":"Article 106026"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847224003848","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Soil chromium (Cr) accumulation is escalating, severely hindering plant growth and development. Plant growth-promoting bacteria (PGPB) have shown potential in enhancing plant tolerance to heavy metals. However, the role and mechanisms of Cr(VI)-reducing PGPB strains in improving the growth of pakchoi under Cr toxicity remain unclear. This study aimed to isolate a Cr(VI)-reducing PGPB strain from Cr-contaminated soil, evaluate its effect on pakchoi growth under Cr(VI) stress, and investigate the mechanisms involved. Our findings showed that Bacillus sp. NEAU-DCB1–2 effectively reduce Cr(VI) to Cr(III) and produced indole-3-acetic acid and siderophores. Under Cr(VI) stress, inoculation with NEAU-DC1–2 significantly promoted seed germination and early growth of pakchoi. In pot experiments, NEAU-DCB1–2 significantly increased biomass accumulation, plant height, and root length of Cr(VI)-treated pakchoi seedlings, while reducing the Cr(VI) content in root, shoot and soil. Moreover, NEAU-DCB1–2 greatly increased catalase, superoxide dismutase, peroxidase, and ascorbate peroxidase activities in seedlings under Cr(VI) stress, thereby reducing malondialdehyde content. Transcriptome analysis indicated substantial alterations in gene expression patterns after inoculation with NEAU-DCB1–2 under Cr(VI) stress. Further analyses revealed that NEAU-DCB1–2 mainly affected the responses of antioxidant system, metal chelation and transport, together with auxin, abscisic acid, and jasmonic acid signaling to Cr(VI) stress. Conclusively, the Cr(VI)-reducing PGPB strain NEAU-DCB1–2 significantly enhances the growth and Cr tolerance of pakchoi through multiple mechanisms, offering a valuable microbial resource for mitigating the adverse effects of heavy metal contamination in agricultural soils on the yield and safety of vegetable crops.
期刊介绍:
Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment.
In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief.
The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB.
The areas covered by the Journal include:
(1) Responses of plants to heavy metals and pollutants
(2) Plant/water interactions (salinity, drought, flooding)
(3) Responses of plants to radiations ranging from UV-B to infrared
(4) Plant/atmosphere relations (ozone, CO2 , temperature)
(5) Global change impacts on plant ecophysiology
(6) Biotic interactions involving environmental factors.