Role of constraint volume and heat flux on the design of evaporator tubes of steam generator by entropy generation minimization

IF 5.1 3区 工程技术 Q2 ENERGY & FUELS
Md Naim Hossain , Koushik Ghosh
{"title":"Role of constraint volume and heat flux on the design of evaporator tubes of steam generator by entropy generation minimization","authors":"Md Naim Hossain ,&nbsp;Koushik Ghosh","doi":"10.1016/j.tsep.2024.103043","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a design methodology for evaporator tubes of a steam generator by applying the entropy generation minimization (EGM) approach. A two-phase flow-based entropy generation model for steam generator evaporator tubes is developed, with coolant volume as a constraint. For a target steam generation rate, the total entropy generation of the evaporator circuit is minimized using system volume and furnace heat flux as two constraints. It is observed that for a fixed steam generation rate, with increasing evaporator diameter, the furnace height decreases while the cross-sectional area increases. The analysis reveals that for a steam generation rate of 100 kg/s and a fixed circuit volume of 47 m<sup>3</sup>, increasing the heat flux from 36 to 50 kW/m<sup>2</sup> shifts the EGM point from an evaporator diameter of 62 mm to 84 mm, respectively. On the other hand, the minimum point shifts to a diameter of 43 mm when the heat flux is decreased to 25 kW/m<sup>2</sup>. The present study concludes that the selection of the constraint volume for designing the evaporator downcomer circuit for a target steam generation rate should be done based on the available furnace heat flux to choose the most efficient design.</div></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":"56 ","pages":"Article 103043"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904924006619","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a design methodology for evaporator tubes of a steam generator by applying the entropy generation minimization (EGM) approach. A two-phase flow-based entropy generation model for steam generator evaporator tubes is developed, with coolant volume as a constraint. For a target steam generation rate, the total entropy generation of the evaporator circuit is minimized using system volume and furnace heat flux as two constraints. It is observed that for a fixed steam generation rate, with increasing evaporator diameter, the furnace height decreases while the cross-sectional area increases. The analysis reveals that for a steam generation rate of 100 kg/s and a fixed circuit volume of 47 m3, increasing the heat flux from 36 to 50 kW/m2 shifts the EGM point from an evaporator diameter of 62 mm to 84 mm, respectively. On the other hand, the minimum point shifts to a diameter of 43 mm when the heat flux is decreased to 25 kW/m2. The present study concludes that the selection of the constraint volume for designing the evaporator downcomer circuit for a target steam generation rate should be done based on the available furnace heat flux to choose the most efficient design.
通过熵生成最小化设计蒸汽发生器蒸发管时约束体积和热通量的作用
本文通过应用熵生成最小化(EGM)方法,提出了一种蒸汽发生器蒸发管的设计方法。以冷却剂体积为约束条件,为蒸汽发生器蒸发管建立了基于两相流的熵生成模型。对于目标蒸汽产生率,以系统容积和炉膛热通量作为两个约束条件,使蒸发器回路的总熵产生量最小化。结果表明,在蒸汽产生率固定的情况下,随着蒸发器直径的增大,炉子高度减小,而横截面积增大。分析表明,在蒸汽产生率为 100 kg/s、回路容积固定为 47 m3 的情况下,热通量从 36 kW/m2 增加到 50 kW/m2,EGM 点分别从蒸发器直径 62 mm 增加到 84 mm。另一方面,当热流量减小到 25 kW/m2 时,最小点的直径变为 43 mm。本研究得出的结论是,在设计目标蒸汽产生率的蒸发器导管回路时,应根据可用的炉膛热通量来选择约束容积,以选择最有效的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Thermal Science and Engineering Progress
Thermal Science and Engineering Progress Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
7.20
自引率
10.40%
发文量
327
审稿时长
41 days
期刊介绍: Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信