{"title":"Backwards-reachability for cooperating multi-pushdown systems","authors":"Chris Köcher , Dietrich Kuske","doi":"10.1016/j.jcss.2024.103601","DOIUrl":null,"url":null,"abstract":"<div><div>A cooperating multi-pushdown system consists of a tuple of pushdown systems that can delegate the execution of recursive procedures to sub-tuples; control returns to the calling tuple once all sub-tuples finished their task. This allows the concurrent execution since disjoint sub-tuples can perform their task independently. Because of the concrete form of recursive descent into sub-tuples, the content of the multi-pushdown does not form an arbitrary tuple of words, but can be understood as a Mazurkiewicz trace. For such systems, we prove that the backwards reachability relation efficiently preserves recognizability, generalizing a result and proof technique by Bouajjani et al. for single-pushdown systems. It follows that the reachability relation is decidable for cooperating multi-pushdown systems in polynomial time and the same holds, e.g., for safety and liveness properties given by recognizable sets of configurations.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"148 ","pages":"Article 103601"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000024000965","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
A cooperating multi-pushdown system consists of a tuple of pushdown systems that can delegate the execution of recursive procedures to sub-tuples; control returns to the calling tuple once all sub-tuples finished their task. This allows the concurrent execution since disjoint sub-tuples can perform their task independently. Because of the concrete form of recursive descent into sub-tuples, the content of the multi-pushdown does not form an arbitrary tuple of words, but can be understood as a Mazurkiewicz trace. For such systems, we prove that the backwards reachability relation efficiently preserves recognizability, generalizing a result and proof technique by Bouajjani et al. for single-pushdown systems. It follows that the reachability relation is decidable for cooperating multi-pushdown systems in polynomial time and the same holds, e.g., for safety and liveness properties given by recognizable sets of configurations.
期刊介绍:
The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions.
Research areas include traditional subjects such as:
• Theory of algorithms and computability
• Formal languages
• Automata theory
Contemporary subjects such as:
• Complexity theory
• Algorithmic Complexity
• Parallel & distributed computing
• Computer networks
• Neural networks
• Computational learning theory
• Database theory & practice
• Computer modeling of complex systems
• Security and Privacy.