Wood-based phase change energy storage composite material with reversible thermochromic properties

IF 5.6 1区 农林科学 Q1 AGRICULTURAL ENGINEERING
Wenjie Zhu , Linping Tian , Zhiyuan Yin , Yingxuan Feng , Wenjie Xia , Huinan Wang , Qingfeng Sun , Yingying Li
{"title":"Wood-based phase change energy storage composite material with reversible thermochromic properties","authors":"Wenjie Zhu ,&nbsp;Linping Tian ,&nbsp;Zhiyuan Yin ,&nbsp;Yingxuan Feng ,&nbsp;Wenjie Xia ,&nbsp;Huinan Wang ,&nbsp;Qingfeng Sun ,&nbsp;Yingying Li","doi":"10.1016/j.indcrop.2024.120042","DOIUrl":null,"url":null,"abstract":"<div><div>With the continuous increase in global energy demand and environmental challenges, the efficient utilization and storage of energy have become critical areas of scientific research. This study presents the preparation and performance assessment of a wood-based phase change composite (TPW) with reversible thermochromic properties. Thermogravimetric analysis (TG) confirmed thermal stability across 26 °C to 270 °C, while differential scanning calorimetry (DSC) demonstrated that TPW has good thermal cycling performance, and suitable phase change temperature at about 34 °C. Thermal insulation tests showed that TPW can reduce heat exchange between inside and outside environment, maintaining the internal temperature for longer time. Below the transition temperature, the material displays a bluish-purple color, transitioning to light yellow upon heating, with a notable color difference (<em>ΔE</em>*) increase from 3.46 to 67.89. Since the phase transition temperature close to human body temperature, enhances TPW’s compatibility for applications in home decor, temperature indicators, and anti-counterfeit labeling. This research contributes novel insights and foundational data for advancing wood-based functional materials in sustainable applications.</div></div>","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":"222 ","pages":"Article 120042"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Crops and Products","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926669024020193","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

With the continuous increase in global energy demand and environmental challenges, the efficient utilization and storage of energy have become critical areas of scientific research. This study presents the preparation and performance assessment of a wood-based phase change composite (TPW) with reversible thermochromic properties. Thermogravimetric analysis (TG) confirmed thermal stability across 26 °C to 270 °C, while differential scanning calorimetry (DSC) demonstrated that TPW has good thermal cycling performance, and suitable phase change temperature at about 34 °C. Thermal insulation tests showed that TPW can reduce heat exchange between inside and outside environment, maintaining the internal temperature for longer time. Below the transition temperature, the material displays a bluish-purple color, transitioning to light yellow upon heating, with a notable color difference (ΔE*) increase from 3.46 to 67.89. Since the phase transition temperature close to human body temperature, enhances TPW’s compatibility for applications in home decor, temperature indicators, and anti-counterfeit labeling. This research contributes novel insights and foundational data for advancing wood-based functional materials in sustainable applications.
具有可逆热变色特性的木基相变储能复合材料
随着全球能源需求的持续增长和环境挑战的日益严峻,能源的高效利用和储存已成为科学研究的关键领域。本研究介绍了一种具有可逆热致变色特性的木基相变复合材料(TPW)的制备和性能评估。热重分析(TG)证实了其在 26 ℃ 至 270 ℃ 范围内的热稳定性,而差示扫描量热法(DSC)则证明了 TPW 具有良好的热循环性能,并在 34 ℃ 左右具有合适的相变温度。隔热测试表明,TPW 可以减少内外环境之间的热交换,从而长时间保持内部温度。在转变温度以下,材料呈现蓝紫色,加热后转变为淡黄色,色差(ΔE*)从 3.46 显著增加到 67.89。由于相变温度接近人体体温,因此提高了 TPW 在家居装饰、温度指示器和防伪标签等应用领域的兼容性。这项研究为推动木基功能材料在可持续应用领域的发展提供了新的见解和基础数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Industrial Crops and Products
Industrial Crops and Products 农林科学-农业工程
CiteScore
9.50
自引率
8.50%
发文量
1518
审稿时长
43 days
期刊介绍: Industrial Crops and Products is an International Journal publishing academic and industrial research on industrial (defined as non-food/non-feed) crops and products. Papers concern both crop-oriented and bio-based materials from crops-oriented research, and should be of interest to an international audience, hypothesis driven, and where comparisons are made statistics performed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信