Period integrals of smooth projective complete intersections as exponential periods

IF 0.7 2区 数学 Q2 MATHEMATICS
Jeehoon Park
{"title":"Period integrals of smooth projective complete intersections as exponential periods","authors":"Jeehoon Park","doi":"10.1016/j.jpaa.2024.107836","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>X</em> be a smooth projective complete intersection over <span><math><mi>Q</mi></math></span> of dimension <span><math><mi>n</mi><mo>−</mo><mi>k</mi></math></span> in the projective space <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> defined by the zero locus of <span><math><munder><mrow><mi>f</mi></mrow><mo>_</mo></munder><mo>(</mo><munder><mrow><mi>x</mi></mrow><mo>_</mo></munder><mo>)</mo><mo>=</mo><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><munder><mrow><mi>x</mi></mrow><mo>_</mo></munder><mo>)</mo><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><munder><mrow><mi>x</mi></mrow><mo>_</mo></munder><mo>)</mo><mo>)</mo></math></span>, for given positive integers <em>n</em> and <em>k</em>. For a given primitive homology cycle <span><math><mo>[</mo><mi>γ</mi><mo>]</mo><mo>∈</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msub><msub><mrow><mo>(</mo><mi>X</mi><mo>(</mo><mi>C</mi><mo>)</mo><mo>,</mo><mi>Z</mi><mo>)</mo></mrow><mrow><mn>0</mn></mrow></msub></math></span>, the period integral is defined to be a linear map from the primitive de Rham cohomology group <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>d</mi><mi>R</mi><mo>,</mo><mi>prim</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msubsup><mo>(</mo><mi>X</mi><mo>(</mo><mi>C</mi><mo>)</mo><mo>;</mo><mi>Q</mi><mo>)</mo></math></span> to <span><math><mi>C</mi></math></span> given by <span><math><mo>[</mo><mi>ω</mi><mo>]</mo><mo>↦</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>γ</mi></mrow></msub><mi>ω</mi></math></span>. The goal of this article is to interpret this period integral as <em>Feynman's path integral</em> of 0-dimensional quantum field theory with the action functional <span><math><mi>S</mi><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>ℓ</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></msubsup><msub><mrow><mi>y</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><msub><mrow><mi>f</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>(</mo><munder><mrow><mi>x</mi></mrow><mo>_</mo></munder><mo>)</mo></math></span> (in other words, <em>the exponential period</em> with the action functional <em>S</em>) and use this interpretation to develop a formal deformation theory of period integrals of <em>X</em>, which can be viewed as a modern deformation theoretic treatment of the period integrals based on the Maurer-Cartan equation of a dgla (differential graded Lie algebra).</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 1","pages":"Article 107836"},"PeriodicalIF":0.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002330","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let X be a smooth projective complete intersection over Q of dimension nk in the projective space PQn defined by the zero locus of f_(x_)=(f1(x_),,fk(x_)), for given positive integers n and k. For a given primitive homology cycle [γ]Hnk(X(C),Z)0, the period integral is defined to be a linear map from the primitive de Rham cohomology group HdR,primnk(X(C);Q) to C given by [ω]γω. The goal of this article is to interpret this period integral as Feynman's path integral of 0-dimensional quantum field theory with the action functional S==1kyf(x_) (in other words, the exponential period with the action functional S) and use this interpretation to develop a formal deformation theory of period integrals of X, which can be viewed as a modern deformation theoretic treatment of the period integrals based on the Maurer-Cartan equation of a dgla (differential graded Lie algebra).
作为指数周期的光滑投影完全相交的周期积分
设 X 是在给定正整数 n 和 k 的投影空间 PQn 中,维数为 n-k 的 Q 上的光滑投影完全交,其定义为 f_(x_)=(f1(x_),⋯,fk(x_)) 的零点。对于给定的原始同调周期 [γ]∈Hn-k(X(C),Z)0,周期积分被定义为从原始 de Rham 同调群 HdR,primn-k(X(C);Q) 到 C 的线性映射,由 [ω]↦∫γω 给定。本文的目的是把这个周期积分解释为0维量子场论的费曼路径积分,其作用函数为S=∑ℓ=1kyℓfℓ(x_)(换句话说、的指数周期),并利用这一解释发展了 X 周期积分的形式变形理论,这可以看作是基于微分级列代数的毛勒-卡尔坦方程对周期积分的现代变形理论处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信