DK conjecture for some K-inequivalences from Grassmannians

IF 0.7 2区 数学 Q2 MATHEMATICS
Naichung Conan Leung , Ying Xie
{"title":"DK conjecture for some K-inequivalences from Grassmannians","authors":"Naichung Conan Leung ,&nbsp;Ying Xie","doi":"10.1016/j.jpaa.2024.107831","DOIUrl":null,"url":null,"abstract":"<div><div>The DK conjecture of Bondal-Orlov <span><span>[1]</span></span> and Kawamata <span><span>[2]</span></span> states that there should be an embedding of bounded derived categories for any <em>K</em>-inequivalence, which is proved to be true for the toroidal case (<span><span>[3]</span></span>, <span><span>[4]</span></span>, <span><span>[5]</span></span> and <span><span>[6]</span></span>). In this paper, we construct examples of non-toroidal <em>K</em>-inequivalences from Grassmannians inspired by <span><span>[7]</span></span>, <span><span>[8]</span></span>, <span><span>[9]</span></span> and <span><span>[10]</span></span>, and we show that these <em>K</em>-inequivalences satisfy the DK conjecture.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 1","pages":"Article 107831"},"PeriodicalIF":0.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002287","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The DK conjecture of Bondal-Orlov [1] and Kawamata [2] states that there should be an embedding of bounded derived categories for any K-inequivalence, which is proved to be true for the toroidal case ([3], [4], [5] and [6]). In this paper, we construct examples of non-toroidal K-inequivalences from Grassmannians inspired by [7], [8], [9] and [10], and we show that these K-inequivalences satisfy the DK conjecture.
一些格拉斯曼 K-inequivalences 的 DK 猜想
邦达尔-奥洛夫[1]和川俣[2]的 DK 猜想指出,任何 K-inequivalence 都应该有一个有界派生范畴的嵌入,这在环面情况下被证明是正确的([3]、[4]、[5] 和 [6])。本文受[7]、[8]、[9]和[10]的启发,从格拉斯曼中构造了非环状 K-inequivalences 的例子,并证明这些 K-inequivalences 满足 DK 猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信