{"title":"Dual stage semantic information based generative adversarial network for image super-resolution","authors":"Shailza Sharma , Abhinav Dhall , Shikhar Johri , Vinay Kumar , Vivek Singh","doi":"10.1016/j.cviu.2024.104226","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning has revolutionized image super-resolution, yet challenges persist in preserving intricate details and avoiding overly smooth reconstructions. In this work, we introduce a novel architecture, the Residue and Semantic Feature-based Dual Subpixel Generative Adversarial Network (RSF-DSGAN), which emphasizes the critical role of semantic information in addressing these issues. The proposed generator architecture is designed with two sequential stages: the Premier Residual Stage and the Deuxième Residual Stage. These stages are concatenated to form a dual-stage upsampling process, substantially augmenting the model’s capacity for feature learning. A central innovation of our approach is the integration of semantic information directly into the generator. Specifically, feature maps derived from a pre-trained network are fused with the primary feature maps of the first stage, enriching the generator with high-level contextual cues. This semantic infusion enhances the fidelity and sharpness of reconstructed images, particularly in preserving object details and textures. Inter- and intra-residual connections are employed within these stages to maintain high-frequency details and fine textures. Additionally, spectral normalization is introduced in the discriminator to stabilize training. Comprehensive evaluations, including visual perception and mean opinion scores, demonstrate that RSF-DSGAN, with its emphasis on semantic information, outperforms current state-of-the-art super-resolution methods.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"250 ","pages":"Article 104226"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224003072","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning has revolutionized image super-resolution, yet challenges persist in preserving intricate details and avoiding overly smooth reconstructions. In this work, we introduce a novel architecture, the Residue and Semantic Feature-based Dual Subpixel Generative Adversarial Network (RSF-DSGAN), which emphasizes the critical role of semantic information in addressing these issues. The proposed generator architecture is designed with two sequential stages: the Premier Residual Stage and the Deuxième Residual Stage. These stages are concatenated to form a dual-stage upsampling process, substantially augmenting the model’s capacity for feature learning. A central innovation of our approach is the integration of semantic information directly into the generator. Specifically, feature maps derived from a pre-trained network are fused with the primary feature maps of the first stage, enriching the generator with high-level contextual cues. This semantic infusion enhances the fidelity and sharpness of reconstructed images, particularly in preserving object details and textures. Inter- and intra-residual connections are employed within these stages to maintain high-frequency details and fine textures. Additionally, spectral normalization is introduced in the discriminator to stabilize training. Comprehensive evaluations, including visual perception and mean opinion scores, demonstrate that RSF-DSGAN, with its emphasis on semantic information, outperforms current state-of-the-art super-resolution methods.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems