{"title":"CFD-DEM simulation study on the bed dynamics of a binary mixture with super-quadric particles in a fluidized bed","authors":"Ju Wang , Guirong Bao","doi":"10.1016/j.powtec.2024.120425","DOIUrl":null,"url":null,"abstract":"<div><div>In biomass thermal conversion processes such as pyrolysis and gasification, biomass often takes on a cylindrical shape. However, most previous studies have modeled biomass as spherical, leaving the fluidization and mixing behaviors of non-spherical biomass particles with approximately spherical bed materials insufficiently explored. To bridge this gap, a super-quadratic particle model coupled with CFD-DEM was used to explore the fluidization characteristics and mixing dynamics of non-spherical binary mixtures. The numerical model successfully validated the pressure drop and spatial distribution within the binary mixture. The results indicate that particle mixing is primarily driven by the rise and movement of bubbles. The large aspect ratio of the cylindrical particles, combined with the narrow thickness of the 2D rectangular fluidized bed, leads to a significant interlocking effect during fluidization. This interlocking hinders both fluidization and mixing, resulting in poor overall performance for non-spherical particles. At a low superficial velocity (<em>U</em><sub><em>g</em></sub>), only the cylindrical particles in the lower part are fluidized as a result of the rising central bubble. The two particle types achieve effective mixing as the <em>U</em><sub><em>g</em></sub> rises to a high value. The mixing index increases from 0.78 to 0.94 as the <em>U</em><sub><em>g</em></sub> increases from 1.8 to 2.1 m/s. However, the stacking pattern of cylindrical particles creates a dead zone at the bed bottom, occupied solely by spherical particles, which limits local bed mixing and fluidization. As the <em>U</em><sub><em>g</em></sub> increases from 1.8 to 2.1 m/s and the dimensionless inventory height increases from 0.6 to 1.0, the axial dispersion coefficient of the cylinders increases from 1.17<span><math><mo>×</mo></math></span>10<sup>−3</sup> to 4.35<span><math><mo>×</mo></math></span>10<sup>−3</sup> m<sup>2</sup>/s and from 1.91<span><math><mo>×</mo></math></span>10<sup>−3</sup> to 9.22<span><math><mo>×</mo></math></span>10<sup>−3</sup> m<sup>2</sup>/s, respectively. This study provides new insights into the behavior of non-spherical particles, offering potential avenues for optimizing chemical engineering processes.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120425"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024010696","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In biomass thermal conversion processes such as pyrolysis and gasification, biomass often takes on a cylindrical shape. However, most previous studies have modeled biomass as spherical, leaving the fluidization and mixing behaviors of non-spherical biomass particles with approximately spherical bed materials insufficiently explored. To bridge this gap, a super-quadratic particle model coupled with CFD-DEM was used to explore the fluidization characteristics and mixing dynamics of non-spherical binary mixtures. The numerical model successfully validated the pressure drop and spatial distribution within the binary mixture. The results indicate that particle mixing is primarily driven by the rise and movement of bubbles. The large aspect ratio of the cylindrical particles, combined with the narrow thickness of the 2D rectangular fluidized bed, leads to a significant interlocking effect during fluidization. This interlocking hinders both fluidization and mixing, resulting in poor overall performance for non-spherical particles. At a low superficial velocity (Ug), only the cylindrical particles in the lower part are fluidized as a result of the rising central bubble. The two particle types achieve effective mixing as the Ug rises to a high value. The mixing index increases from 0.78 to 0.94 as the Ug increases from 1.8 to 2.1 m/s. However, the stacking pattern of cylindrical particles creates a dead zone at the bed bottom, occupied solely by spherical particles, which limits local bed mixing and fluidization. As the Ug increases from 1.8 to 2.1 m/s and the dimensionless inventory height increases from 0.6 to 1.0, the axial dispersion coefficient of the cylinders increases from 1.1710−3 to 4.3510−3 m2/s and from 1.9110−3 to 9.2210−3 m2/s, respectively. This study provides new insights into the behavior of non-spherical particles, offering potential avenues for optimizing chemical engineering processes.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.