{"title":"Bio-based curing agent for epoxy resins: Simultaneously improved toughness, strength, and flame retardancy","authors":"Xingwei He, Yupeng Xu, Lina Liu, Shenyuan Fu, Gaobo Lou","doi":"10.1016/j.indcrop.2024.120028","DOIUrl":null,"url":null,"abstract":"<div><div>Improving the toughness of epoxy resin (EP) while maintaining its strength is still considered a huge challenge. Herein, a novel bio-based curing agent, PA–DAD, has successfully been developed for EP that provides both mechanical reinforcement and flame retardancy. This agent was prepared via a straightforward neutralizing process between phytic acid (PA) and 1,10-diaminodecane (DAD). A series of bio-based curing agents labeled PA<sub>1</sub>–DAD<sub>6</sub>, PA<sub>1</sub>–DAD<sub>9</sub>, and PA<sub>1</sub>–DAD<sub>12</sub> were produced by adjusting the PA and DAD stoichiometric ratio. During the curing process, PA–DAD dissociates into PA and DAD, PA functions as an ionic cross-linking site within the EP structure. This considerably enhances the mechanical properties of the EP compared with using DAD alone as a curing agent. As a consequence, the tensile, flexural, and the impact strength values of EP/5 % PA<sub>1</sub>–DAD<sub>6</sub> enhanced by 103 %, 70 %, and 168 %, respectively, compared with EP/5 % DAD at a 5 wt% addition. Additionally, the tensile and flexural toughness values of EP/5 % PA<sub>1</sub>–DAD<sub>6</sub> were 1250 % and 649 % higher compared to those of EP/5 % DAD, respectively, demonstrating the exceptional toughening effect of PA–DAD on EP. Furthermore, the flame retardancy of EP/PA–DAD improved because of the high P content in PA–DAD. Compared with EP/5 % DAD, EP/5 % PA<sub>1</sub>–DAD<sub>6</sub> shown decreases of 10.7 % in peak heat release rate, 8.4 % in total heat release, and 13.6 % in total smoke production. The straightforward fabrication process, exceptional mechanical enhancement, and use of sustainable bio-based raw materials make PA–DAD highly suitable for large-scale production of advanced EP materials.</div></div>","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":"222 ","pages":"Article 120028"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Crops and Products","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926669024020053","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Improving the toughness of epoxy resin (EP) while maintaining its strength is still considered a huge challenge. Herein, a novel bio-based curing agent, PA–DAD, has successfully been developed for EP that provides both mechanical reinforcement and flame retardancy. This agent was prepared via a straightforward neutralizing process between phytic acid (PA) and 1,10-diaminodecane (DAD). A series of bio-based curing agents labeled PA1–DAD6, PA1–DAD9, and PA1–DAD12 were produced by adjusting the PA and DAD stoichiometric ratio. During the curing process, PA–DAD dissociates into PA and DAD, PA functions as an ionic cross-linking site within the EP structure. This considerably enhances the mechanical properties of the EP compared with using DAD alone as a curing agent. As a consequence, the tensile, flexural, and the impact strength values of EP/5 % PA1–DAD6 enhanced by 103 %, 70 %, and 168 %, respectively, compared with EP/5 % DAD at a 5 wt% addition. Additionally, the tensile and flexural toughness values of EP/5 % PA1–DAD6 were 1250 % and 649 % higher compared to those of EP/5 % DAD, respectively, demonstrating the exceptional toughening effect of PA–DAD on EP. Furthermore, the flame retardancy of EP/PA–DAD improved because of the high P content in PA–DAD. Compared with EP/5 % DAD, EP/5 % PA1–DAD6 shown decreases of 10.7 % in peak heat release rate, 8.4 % in total heat release, and 13.6 % in total smoke production. The straightforward fabrication process, exceptional mechanical enhancement, and use of sustainable bio-based raw materials make PA–DAD highly suitable for large-scale production of advanced EP materials.
期刊介绍:
Industrial Crops and Products is an International Journal publishing academic and industrial research on industrial (defined as non-food/non-feed) crops and products. Papers concern both crop-oriented and bio-based materials from crops-oriented research, and should be of interest to an international audience, hypothesis driven, and where comparisons are made statistics performed.