Jacopo Burger, Giorgio Blandano, Giuseppe Maurizio Facchi, Raffaella Lanzarotti
{"title":"2S-SGCN: A two-stage stratified graph convolutional network model for facial landmark detection on 3D data","authors":"Jacopo Burger, Giorgio Blandano, Giuseppe Maurizio Facchi, Raffaella Lanzarotti","doi":"10.1016/j.cviu.2024.104227","DOIUrl":null,"url":null,"abstract":"<div><div>Facial Landmark Detection (FLD) algorithms play a crucial role in numerous computer vision applications, particularly in tasks such as face recognition, head pose estimation, and facial expression analysis. While FLD on images has long been the focus, the emergence of 3D data has led to a surge of interest in FLD on it due to its potential applications in various fields, including medical research. However, automating FLD in this context presents significant challenges, such as selecting suitable network architectures, refining outputs for precise landmark localization and optimizing computational efficiency. In response, this paper presents a novel approach, the 2-Stage Stratified Graph Convolutional Network (<span>2S-SGCN</span>), which addresses these challenges comprehensively. The first stage aims to detect landmark regions using heatmap regression, which leverages both local and long-range dependencies through a stratified approach. In the second stage, 3D landmarks are precisely determined using a new post-processing technique, namely <span>MSE-over-mesh</span>. <span>2S-SGCN</span> ensures both efficiency and suitability for resource-constrained devices. Experimental results on 3D scans from the public Facescape and Headspace datasets, as well as on point clouds derived from FLAME meshes collected in the DAD-3DHeads dataset, demonstrate that the proposed method achieves state-of-the-art performance across various conditions. Source code is accessible at <span><span>https://github.com/gfacchi-dev/CVIU-2S-SGCN</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"250 ","pages":"Article 104227"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224003084","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Facial Landmark Detection (FLD) algorithms play a crucial role in numerous computer vision applications, particularly in tasks such as face recognition, head pose estimation, and facial expression analysis. While FLD on images has long been the focus, the emergence of 3D data has led to a surge of interest in FLD on it due to its potential applications in various fields, including medical research. However, automating FLD in this context presents significant challenges, such as selecting suitable network architectures, refining outputs for precise landmark localization and optimizing computational efficiency. In response, this paper presents a novel approach, the 2-Stage Stratified Graph Convolutional Network (2S-SGCN), which addresses these challenges comprehensively. The first stage aims to detect landmark regions using heatmap regression, which leverages both local and long-range dependencies through a stratified approach. In the second stage, 3D landmarks are precisely determined using a new post-processing technique, namely MSE-over-mesh. 2S-SGCN ensures both efficiency and suitability for resource-constrained devices. Experimental results on 3D scans from the public Facescape and Headspace datasets, as well as on point clouds derived from FLAME meshes collected in the DAD-3DHeads dataset, demonstrate that the proposed method achieves state-of-the-art performance across various conditions. Source code is accessible at https://github.com/gfacchi-dev/CVIU-2S-SGCN.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems