{"title":"Numerical investigation and optimization of heterogeneous-homogeneous coupled condensation in steam turbines of tower solar power system","authors":"Guojie Zhang , Qiang Zuo , Jiaheng Chen , Zunlong Jin , Sławomir Dykas , Mirosław Majkut , Krystian Smołka","doi":"10.1016/j.icheatmasstransfer.2024.108336","DOIUrl":null,"url":null,"abstract":"<div><div>The significant potential for stage efficiency improvement is in steam turbines of solar thermal power plants, which operate in difficult atmospheric conditions contributing to the high pressure in the condenser and steam impurities. Presented study aims to examine the influence of three steam impurities on the condensing flow through turbine stage rotor. Firstly, the modified condensation model is validated using experimental data. Next, the flow characteristics and losses of pure steam and steam containing heterogeneous particles in three-dimensional turbine are investigated separately, and the effects of particles on the flow process and system performance are analyzed. Finally, the effect of backpressure on the condensation flow and the turbine performance is investigated. The results reveal that homogeneous condensation predominantly occurs at higher blade height, NaCl particles have the most significant impact on condensation. At a particle concentration of <span><math><msup><mn>10</mn><mn>15</mn></msup></math></span> <span><math><mfenced><mrow><mn>1</mn><mo>/</mo><mi>kg</mi></mrow></mfenced></math></span>, the thermal efficiency of heterogeneous condensation on solid particles and tiny droplets increases by 1.6 % and 2.3 %, respectively, compared to homogeneous condensation. Conversely, NaCl particles exhibit a reduction of 0.2 %. Lastly, by strategically raising the backpressure, it is feasible to decrease the humidity on the final stage blades, enhancing thermal efficiency and ultimately optimizing tower solar power generation system operation.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"159 ","pages":"Article 108336"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193324010984","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The significant potential for stage efficiency improvement is in steam turbines of solar thermal power plants, which operate in difficult atmospheric conditions contributing to the high pressure in the condenser and steam impurities. Presented study aims to examine the influence of three steam impurities on the condensing flow through turbine stage rotor. Firstly, the modified condensation model is validated using experimental data. Next, the flow characteristics and losses of pure steam and steam containing heterogeneous particles in three-dimensional turbine are investigated separately, and the effects of particles on the flow process and system performance are analyzed. Finally, the effect of backpressure on the condensation flow and the turbine performance is investigated. The results reveal that homogeneous condensation predominantly occurs at higher blade height, NaCl particles have the most significant impact on condensation. At a particle concentration of , the thermal efficiency of heterogeneous condensation on solid particles and tiny droplets increases by 1.6 % and 2.3 %, respectively, compared to homogeneous condensation. Conversely, NaCl particles exhibit a reduction of 0.2 %. Lastly, by strategically raising the backpressure, it is feasible to decrease the humidity on the final stage blades, enhancing thermal efficiency and ultimately optimizing tower solar power generation system operation.
期刊介绍:
International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.