Heuristic based physics informed neural network (H-PINN) approach to analyze nanotribology for viscous flow of ethylene glycol and water under magnetic effects among parallel sheets

IF 6.4 2区 工程技术 Q1 MECHANICS
Muhammad Naeem Aslam , Nadeem Shaukat , Arshad Riaz
{"title":"Heuristic based physics informed neural network (H-PINN) approach to analyze nanotribology for viscous flow of ethylene glycol and water under magnetic effects among parallel sheets","authors":"Muhammad Naeem Aslam ,&nbsp;Nadeem Shaukat ,&nbsp;Arshad Riaz","doi":"10.1016/j.icheatmasstransfer.2024.108320","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we have conducted the study for the flow and thermal transfer of magneto-hydrodynamic squeezing nanofluid in the middle of two collateral plates extending to infinity using artificial neural network (ANN). The fluid employed in this research is a combination of Ethylene Glycol and water, and we delve into the utilization of a hybrid nanoparticle consisting of Fe<sub>3</sub>O<sub>4</sub> and MoS<sub>2</sub> particles. To solve the governing differential equations, we used unsupervised heuristic based physics informed neural network (H-PINN) based fitness function<span><math><mo>.</mo></math></span> In this research, the weights and biases of neural network were optimized using a hybridization of heuristic algorithms to achieve high accuracy. The fitness values obtained from proposed approach ranging from<span><math><mspace></mspace><msup><mn>10</mn><mrow><mo>−</mo><mn>05</mn></mrow></msup></math></span> to<span><math><mspace></mspace><msup><mn>10</mn><mrow><mo>−</mo><mn>08</mn></mrow></msup></math></span>. The optimal results were then compared with numerical solutions obtained by using Runge-Kutta order-4 method through BVP4c tool as a reference solution, demonstrating the effectiveness of the unsupervised ANN method. The absolute error between the reference solution and proposed heuristic based physics informed neural networks approaches are ranging from<span><math><mspace></mspace><mn>2.36</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>04</mn></mrow></msup><mspace></mspace><mtext>to</mtext><mspace></mspace><mn>3.46</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>06</mn></mrow></msup></math></span>, <span><math><mn>2.77</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>05</mn></mrow></msup><mspace></mspace><mtext>to</mtext><mspace></mspace><mn>1.20</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>05</mn></mrow></msup></math></span> and<span><math><mspace></mspace><mn>1.10</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>06</mn></mrow></msup><mspace></mspace><mtext>to</mtext><mspace></mspace><mn>6.53</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>07</mn></mrow></msup></math></span>. Our findings demonstrate a strong agreement with the numerical approach, with the maximum discrepancy in the profiles of flow speed and energy profiles. Notably, we observed that an increase in the squeeze number and the Hartman number resulted in a reduction in the velocity profile.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"159 ","pages":"Article 108320"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193324010820","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we have conducted the study for the flow and thermal transfer of magneto-hydrodynamic squeezing nanofluid in the middle of two collateral plates extending to infinity using artificial neural network (ANN). The fluid employed in this research is a combination of Ethylene Glycol and water, and we delve into the utilization of a hybrid nanoparticle consisting of Fe3O4 and MoS2 particles. To solve the governing differential equations, we used unsupervised heuristic based physics informed neural network (H-PINN) based fitness function. In this research, the weights and biases of neural network were optimized using a hybridization of heuristic algorithms to achieve high accuracy. The fitness values obtained from proposed approach ranging from1005 to1008. The optimal results were then compared with numerical solutions obtained by using Runge-Kutta order-4 method through BVP4c tool as a reference solution, demonstrating the effectiveness of the unsupervised ANN method. The absolute error between the reference solution and proposed heuristic based physics informed neural networks approaches are ranging from2.36×1004to3.46×1006, 2.77×1005to1.20×1005 and1.10×1006to6.53×1007. Our findings demonstrate a strong agreement with the numerical approach, with the maximum discrepancy in the profiles of flow speed and energy profiles. Notably, we observed that an increase in the squeeze number and the Hartman number resulted in a reduction in the velocity profile.
基于启发式物理信息神经网络(H-PINN)的方法,用于分析平行片间磁效应下乙二醇和水粘性流动的纳米轨迹
在这篇文章中,我们利用人工神经网络(ANN)研究了磁流体挤压纳米流体在两个无限延伸的平行板中间的流动和热传递。本研究采用的流体是乙二醇和水的组合,我们深入研究了由 Fe3O4 和 MoS2 颗粒组成的混合纳米颗粒的使用。为了求解微分方程,我们使用了基于无监督启发式物理信息神经网络(H-PINN)的拟合函数。在这项研究中,我们使用启发式算法的混合方法优化了神经网络的权重和偏置,以实现高精度。所提出的方法获得的适配值从 10-05 到 10-08。然后,将优化结果与通过 BVP4c 工具使用 Runge-Kutta 阶-4 方法获得的数值解作为参考解进行了比较,证明了无监督 ANN 方法的有效性。参考解与基于物理信息的启发式神经网络方法之间的绝对误差分别为 2.36×10-04 至 3.46×10-06、2.77×10-05 至 1.20×10-05 和 1.10×10-06 至 6.53×10-07。我们的研究结果表明与数值方法非常吻合,最大的差异出现在流速和能量曲线上。值得注意的是,我们观察到挤压数和哈特曼数的增加导致了流速剖面的减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.00
自引率
10.00%
发文量
648
审稿时长
32 days
期刊介绍: International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信